FedHiP: Heterogeneity-Invariant Personalized Federated Learning Through Closed-Form Solutions

Department

Program

Citation of Original Publication

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.

Abstract

Lately, Personalized Federated Learning (PFL) has emerged as a prevalent paradigm to deliver personalized models by collaboratively training while simultaneously adapting to each client's local applications. Existing PFL methods typically face a significant challenge due to the ubiquitous data heterogeneity (i.e., non-IID data) across clients, which severely hinders convergence and degrades performance. We identify that the root issue lies in the long-standing reliance on gradient-based updates, which are inherently sensitive to non-IID data. To fundamentally address this issue and bridge the research gap, in this paper, we propose a Heterogeneity-invariant Personalized Federated learning scheme, named FedHiP, through analytical (i.e., closed-form) solutions to avoid gradient-based updates. Specifically, we exploit the trend of self-supervised pre-training, leveraging a foundation model as a frozen backbone for gradient-free feature extraction. Following the feature extractor, we further develop an analytic classifier for gradient-free training. To support both collective generalization and individual personalization, our FedHiP scheme incorporates three phases: analytic local training, analytic global aggregation, and analytic local personalization. The closed-form solutions of our FedHiP scheme enable its ideal property of heterogeneity invariance, meaning that each personalized model remains identical regardless of how non-IID the data are distributed across all other clients. Extensive experiments on benchmark datasets validate the superiority of our FedHiP scheme, outperforming the state-of-the-art baselines by at least 5.79%-20.97% in accuracy.