A self-regulated convolutional neural network for classifying variable stars
| dc.contributor.author | Pérez-Galarce, Francisco | |
| dc.contributor.author | Martínez-Palomera, Jorge | |
| dc.contributor.author | Pichara, Karim | |
| dc.contributor.author | Huijse, Pablo | |
| dc.contributor.author | Catelan, Márcio | |
| dc.date.accessioned | 2025-06-17T14:45:35Z | |
| dc.date.available | 2025-06-17T14:45:35Z | |
| dc.date.issued | 2025-05-20 | |
| dc.description.abstract | Over the last two decades, machine learning models have been widely applied and have proven effective in classifying variable stars, particularly with the adoption of deep learning architectures such as convolutional neural networks, recurrent neural networks, and transformer models. While these models have achieved high accuracy, they require high-quality, representative data and a large number of labelled samples for each star type to generalise well, which can be challenging in time-domain surveys. This challenge often leads to models learning and reinforcing biases inherent in the training data, an issue that is not easily detectable when validation is performed on subsamples from the same catalogue. The problem of biases in variable star data has been largely overlooked, and a definitive solution has yet to be established. In this paper, we propose a new approach to improve the reliability of classifiers in variable star classification by introducing a self-regulated training process. This process utilises synthetic samples generated by a physics-enhanced latent space variational autoencoder, incorporating six physical parameters from Gaia Data Release 3. Our method features a dynamic interaction between a classifier and a generative model, where the generative model produces ad-hoc synthetic light curves to reduce confusion during classifier training and populate underrepresented regions in the physical parameter space. Experiments conducted under various scenarios demonstrate that our self-regulated training approach outperforms traditional training methods for classifying variable stars on biased datasets, showing statistically significant improvements. | |
| dc.description.sponsorship | We acknowledge the support from CONICYT-Chile, through the FONDECYT Regular project number 1180054. F.P. acknowledges the support from National Agency for Research and Development (ANID), through Scholarship Program/Doctorado Nacional/2017- 21171036. Support for M.C. is provided by ANID’s FONDECYT Regular grant #1171273; ANID’s Millennium Science Initiative through grants ICN12 009 and AIM23-0001, awarded to the Millennium Institute of Astrophysics (MAS); and ANID’s Basal project FB210003. | |
| dc.description.uri | http://arxiv.org/abs/2505.14877 | |
| dc.format.extent | 20 pages | |
| dc.genre | journal articles | |
| dc.genre | preprints | |
| dc.identifier | doi:10.13016/m2trva-b7wa | |
| dc.identifier.uri | https://doi.org/10.48550/arXiv.2505.14877 | |
| dc.identifier.uri | http://hdl.handle.net/11603/38918 | |
| dc.language.iso | en_US | |
| dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
| dc.relation.ispartof | UMBC Faculty Collection | |
| dc.relation.ispartof | UMBC Physics Department | |
| dc.relation.ispartof | UMBC Center for Space Sciences and Technology (CSST) / Center for Research and Exploration in Space Sciences & Technology II (CRSST II) | |
| dc.rights | This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law. | |
| dc.rights | Public Domain | |
| dc.rights.uri | https://creativecommons.org/publicdomain/mark/1.0/ | |
| dc.subject | Astrophysics - Solar and Stellar Astrophysics | |
| dc.subject | Computer Science - Machine Learning | |
| dc.title | A self-regulated convolutional neural network for classifying variable stars | |
| dc.type | Text | |
| dcterms.creator | https://orcid.org/0000-0002-7395-4935 |
Files
Original bundle
1 - 1 of 1
