Artificial Intelligence Based Cloud Distributor (AI-CD): Probing Low Cloud Distribution with a Conditional Generative Adversarial Network
dc.contributor.author | Yuan, Tianle | |
dc.date.accessioned | 2019-10-10T14:36:01Z | |
dc.date.available | 2019-10-10T14:36:01Z | |
dc.date.issued | 2019-05-21 | |
dc.description.abstract | Here we introduce the artificial intelligence-based cloud distributor (AI-CD) approach to generate two-dimensional (2D) marine low cloud reflectance fields. AI-CD uses a conditional generative adversarial net (cGAN) framework to model distribution of 2-D cloud reflectance in nature as observed by the MODerate resolution Imaging Spectrometer (MODIS). Specifically, the AI-CD models the conditional distribution of cloud reflectance fields given a set of largescale environmental conditions such as instantaneous sea surface temperature, estimated inversion strength, surface wind speed, relative humidity and large-scale subsidence rate together with random noise. We show that AI-CD can not only generate realistic cloudy scenes but also capture known, physical dependence of cloud properties on large-scale variables. AI-CD is stochastic in nature because generated cloud fields are influenced by random noise. Therefore, given a fixed set of large-scale variables, an ensemble of cloud reflectance fields can be generated using AI-CD. We suggest that AI-CD approach can be used as a data driven framework for stochastic cloud parameterization because it can realistically model sub-grid cloud distributions and their sensitivity to meteorological variables. | en_US |
dc.description.uri | https://arxiv.org/abs/1905.08700 | en_US |
dc.format.extent | 11 pages | en_US |
dc.genre | journal article preprints | en_US |
dc.identifier | doi:10.13016/m2pqan-zsbk | |
dc.identifier.citation | Tianle Yuan, Artificial Intelligence Based Cloud Distributor (AI-CD): Probing Low Cloud Distribution with a Conditional Generative Adversarial Network, Atmospheric and Oceanic Physics, 2019, https://arxiv.org/abs/1905.08700 | en_US |
dc.identifier.uri | http://hdl.handle.net/11603/15021 | |
dc.language.iso | en_US | en_US |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC Joint Center for Earth Systems Technology | |
dc.relation.ispartof | UMBC Faculty Collection | |
dc.rights | This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author. | |
dc.subject | artificial intelligence-based cloud distributor (AI-CD) | en_US |
dc.subject | conditional generative adversarial net (cGAN) | en_US |
dc.subject | MODerate resolution Imaging Spectrometer (MODIS) | en_US |
dc.title | Artificial Intelligence Based Cloud Distributor (AI-CD): Probing Low Cloud Distribution with a Conditional Generative Adversarial Network | en_US |
dc.type | Text | en_US |