Informational Requirements for Transcriptional Regulation
No Thumbnail Available
Links to Files
Permanent Link
Author/Creator
Author/Creator ORCID
Date
2014-05-01
Type of Work
Department
Program
Citation of Original Publication
Patrick K. O'Neill, Robert Forder, Ivan Erill, Informational Requirements for Transcriptional Regulation, Journal of Computational Biology, Volume 21(5): 373–384, 2014, doi: 10.1089/cmb.2014.0032
Rights
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Abstract
Transcription factors (TFs) regulate transcription by binding to specific sites in promoter regions. Information theory provides a useful mathematical framework to analyze the binding motifs associated with TFs but imposes several assumptions that limit their applicability to specific regulatory scenarios. Explicit simulations of the co-evolution of TFs and their binding motifs allow the study of the evolution of regulatory networks with a high degree of realism. In this work we analyze the impact of differential regulatory demands on the information content of TF-binding motifs by means of evolutionary simulations. We generalize a predictive index based on information theory, and we validate its applicability to regulatory scenarios in which the TF binds significantly to the genomic background. Our results show a logarithmic dependence of the evolved information content on the occupancy of target sites and indicate that TFs may actively exploit pseudo-sites to modulate their occupancy of target sites. In regulatory networks with differentially regulated targets, we observe that information content in TF-binding motifs is dictated primarily by the fraction of total probability mass that the TF assigns to its target sites, and we provide a predictive index to estimate the amount of information associated with arbitrarily complex regulatory systems. We observe that complex regulatory patterns can exert additional demands on evolved information content, but, given a total occupancy for target sites, we do not find conclusive
evidence that this effect is because of the range of required binding affinities.