Development of the microcalorimeter and anticoincidence detector for the Line Emission Mapper x-ray probe
Files
Date
Type of Work
Department
Program
Citation of Original Publication
Stephen J. Smith, Joseph S. Adams, Simon R. Bandler, Rachel B. Borrelli, James A. Chervenak, Renata S. Cumbee, Enectali Figueroa-Feliciano, Fred M. Finkbeiner, Joshua Furhman, Samuel V. Hull, Richard L. L. Kelley, Caroline A. Kilbourne, Noah A. Kurinsky, Jennette N. Mateo, Asha Rani, Kazuhiro Sakai, Nicholas A. Wakeham, Edward J. Wassell, Sang H. Yoon, "Development of the microcalorimeter and anticoincidence detector for the Line Emission Mapper x-ray probe," J. Astron. Telesc. Instrum. Syst. 9(4) 041005 (18 October 2023). https://doi.org/10.1117/1.JATIS.9.4.041005
Rights
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain Mark 1.0
Public Domain Mark 1.0
Subjects
Abstract
The Line Emission Mapper (LEM) is an x-ray probe mission concept that is designed to provide unprecedented insight into the physics of galaxy formation, including stellar and black-hole feedback and flows of baryonic matter into and out of galaxies. LEM incorporates a light-weight x-ray optic with a large-format microcalorimeter array. The LEM detector utilizes a 14k pixel array of transition-edge sensors (TESs) that will provide <2.5 eV spectral resolution over the energy range 0.2 to 2 keV, along with a field-of-view of 30 arcmin. The microcalorimeter array and readout builds upon the technology developed for the European Space Agency’s (ESA’s) Athena/x-ray Integral Field Unit. Here, we present a detailed overview of the baseline microcalorimeter design, its performance characteristics, including a detailed energy resolution budget and the expected count-rate capability. In addition, we outline the current status and plan for continued technology maturation. Behind the LEM array sits a high-efficiency TES-based anticoincidence (antico) detector that will reject cosmic-ray background events. We will briefly describe the design of the antico and plan for continued development.
