Semi-Empirical Data Compression for Heliophysics Space Mission Data

dc.contributor.authorda Silva, Daniel
dc.contributor.authorBard, Christopher
dc.contributor.authorThompson, Barbara
dc.contributor.authorDorelli, John
dc.contributor.authorThomas, Brian
dc.contributor.authorBarrie, Alex
dc.date.accessioned2023-11-30T19:54:01Z
dc.date.available2023-11-30T19:54:01Z
dc.date.issued2022-03
dc.description2022 Machine Learning in Heliophysics Conference; Boulder, CO, USA; March 21-25, 2022
dc.description.sponsorshipWe thank the Center for HelioAnalytics for the very important seed funding and community support, as well as the AWS Helioweb resources provided by Brian Thomas via the NASA/GSFC Heliophysics Sciences Division.
dc.description.urihttps://helioanalytics.io/static/content/posters/ml-helio_2022_data_compression.pdf
dc.format.extent1 page
dc.genreposters
dc.identifier.urihttp://hdl.handle.net/11603/30985
dc.language.isoen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Goddard Planetary Heliophysics Institute (GPHI)
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
dc.rightsPublic Domain Mark 1.0 en
dc.rights.urihttps://creativecommons.org/publicdomain/mark/1.0/
dc.titleSemi-Empirical Data Compression for Heliophysics Space Mission Data
dc.typeImage
dcterms.creatorhttps://orcid.org/0000-0001-7537-3539

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ml-helio_2022_data_compression.pdf
Size:
6.24 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: