Diurnal Patterns of the Bi-Directional Reflectance of Fresh-Water Ice

Date

2017-01-20

Department

Program

Citation of Original Publication

Leshkevich, George A., Donald W. Deering, Thomas F. Eck, and Suraiya P. Ahmad. “Diurnal Patterns of the Bi-Directional Reflectance of Fresh-Water Ice.” Annals of Glaciology 14 (January 1990): 153–57. https://doi.org/10.3189/S0260305500008478.

Rights

This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain

Subjects

Abstract

To improve the interpretation of surface cryospheric albedo from satellite sensor data, diurnal measurements of the spectral bi-directional reflectance of a commonly-found fresh-water ice type were made, from which hemispherical reflectance can be derived. The purpose of this study is to document its clear-sky, bi-directional reflectance characteristics in the visible (650–670 nm) and near-infrared (810–840 nm) region, assess the diurnal nature of the reflectance, and quantify the surface anisotropy. Bi-directional reflectances of the re-frozen slush ice measured show a spectral dependence and change significantly with solar zenith angle. Considerable variation occurs at each view angle and among view angles throughout the day. Although diurnal reflectance patterns were similar in both bands, magnitudes varied greatly, being highest in the visible and lowest in the near-infrared region. With the exception of peak saturated (specular) values in the forward scatter direction, bi-directional reflectance was generally highest in the morning when the surface and the illumination were most diffuse in character. The exitance (πN) computed from nadir radiance (N) is compared to the measured hemispheric exitance (M). The πN/M ratios, an index of anisotropy, reveal an anisotropy that increases with increasing solar zenith angle and is more pronounced in the near-infrared region.