Development of Nanosensors and Bioprobes

Date

2000-03-01

Department

Program

Citation of Original Publication

Vo-Dinh, Tuan, Guy D. Griffin, Jean Pierre Alarie, Brian Cullum, Bobby Sumpter, and Donald Noid. “Development of Nanosensors and Bioprobes.” Journal of Nanoparticle Research 2, no. 1 (March 1, 2000): 17–27. https://doi.org/10.1023/A:1010005908586.

Rights

This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain

Abstract

We describe the development and application of nanosensors having bioreceptor probes for bioanalysis. The nanoprobes were fabricated with optical fibers pulled down to tips having distal end sizes of approximately 30–60 nm. The use of two different types of receptors was investigated. Fiberoptic nanoprobes were covalently bound either with bioreceptors, such as antibodies, or with other receptors, such as cyclodextrins that are selective for the size and chemical structure of the analyte molecules. Theoretical calculations were performed to model the binding of beta-cyclodextrin with pyrene and 5,6-benzoquinoline, and to illustrate the possibility of comparing experimental data with theoretical data. The antibody-based nanoprobe was used for in situ measurements of benzopyrene tetrol in single cells. The performance of the nanosensor is illustrated by intracellular measurements performed on a rat liver epithelial cell line (Clone 9) used as the model cell system. The usefulness and potential of these nanotechnology-based biosensors in biological research and applications are discussed.