Satellite- and ground-based CO total column observations over 2010 Russian fires: accuracy of top-down estimates based on thermal IR satellite data

dc.contributor.authorYurganov, L. N.
dc.contributor.authorRakitin, V.
dc.contributor.authorDzhola, A.
dc.contributor.authorAugust, T.
dc.contributor.authorFokeeva, E.
dc.contributor.authorGeorge, M.
dc.contributor.authorGorchakov, G.
dc.contributor.authorGrechko, E.
dc.contributor.authorHannon, S.
dc.contributor.authorKarpov, A.
dc.contributor.authorOtt, L.
dc.contributor.authorSemutnikova, E.
dc.contributor.authorShumsky, R.
dc.contributor.authorStrow, L.
dc.date.accessioned2018-10-23T13:38:14Z
dc.date.available2018-10-23T13:38:14Z
dc.date.issued2011-08-04
dc.description.abstractCO total column data are presented from three space sounders and two ground-based spectrometers in Moscow and its suburbs during the forest and peat fires that occurred in Central Russia in July–August 2010. Also presented are ground-based in situ CO measurements. The Moscow area was strongly impacted by the CO plume from these fires. Concurrent satellite- and ground-based observations were used to quantify the errors of CO top-down emission estimates. On certain days, CO total columns retrieved from the data of the space-based sounders were 2–3 times less than those obtained from the ground-based sun-tracking spectrometers. The depth of the polluted layer over Moscow was estimated using total column measurements compared with CO volume mixing ratios in the surface layer and on the TV tower and found to be around 360 m. The missing CO that is the average difference between the CO total column accurately determined by the ground spectrometers and that retrieved by AIRS, MOPITT, and IASI was determined for the Moscow area between 1.6 and 3.3 × 10¹⁸ molec cm⁻². These values were extrapolated onto the entire plume; subsequently, the CO burden (total mass) over Russia during the fire event was corrected. A top-down estimate of the total emitted CO, obtained by a simple mass balance model increased by 40–100 % for different sensors due to this correction. Final assessments of total CO emitted by Russian wildfires obtained from different sounders are between 34 and 40 Tg CO during July–August 2010.en_US
dc.description.sponsorshipMeasurements in Russia have been possible due to funding from RFBR (grant # 08-05-00659) and ISTC (grant # 3032). Maya George is grateful to CNES for financial support. We thank the NASA, Centre for Atmospheric Chemistry Products and Services (France), and the EUMETSAT for access to the archived data.en_US
dc.description.urihttps://www.atmos-chem-phys.net/11/7925/2011/en_US
dc.format.extent18 pagesen_US
dc.genrejournal articleen_US
dc.identifierdoi:10.13016/M2CV4BW1G
dc.identifier.citationYurganov, L. N., Rakitin, V., Dzhola, A., August, T., Fokeeva, E., George, M., Gorchakov, G., Grechko, E., Hannon, S., Karpov, A., Ott, L., Semutnikova, E., Shumsky, R., and Strow, L.: Satellite- and ground-based CO total column observations over 2010 Russian fires: accuracy of top-down estimates based on thermal IR satellite data, Atmos. Chem. Phys., 11, 7925-7942, https://doi.org/10.5194/acp-11-7925-2011, 2011.en_US
dc.identifier.urihttps://doi.org/10.5194/acp-11-7925-2011
dc.identifier.urihttp://hdl.handle.net/11603/11645
dc.language.isoen_USen_US
dc.publisherCopernicus Publications on behalf of the European Geosciences Unionen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Joint Center for Earth Systems Technology
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Physics Department
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.rightsAttribution 3.0 Unported (CC BY 3.0)
dc.rightshttps://creativecommons.org/licenses/by/3.0/
dc.subjectcolumn observationsen_US
dc.subjectthermal IR satellite dataen_US
dc.subjectCarbon monoxideen_US
dc.subjectNear Infrared Red (NIR)en_US
dc.subjectUMBC High Performance Computing Facility (HPCF)en_US
dc.titleSatellite- and ground-based CO total column observations over 2010 Russian fires: accuracy of top-down estimates based on thermal IR satellite dataen_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acp-11-7925-2011.pdf
Size:
2.36 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: