Surface ultraviolet irradiance from OMI





Citation of Original Publication

A. Tanskanen, N. A. Krotkov, J. R. Herman and A. Arola, "Surface ultraviolet irradiance from OMI," in IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 5, pp. 1267-1271, May 2006, doi: 10.1109/TGRS.2005.862203.


This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain Mark 1.0



The Ozone Monitoring Instrument (OMI) onboard the NASA Earth Observing System (EOS) Aura spacecraft is a nadir-viewing spectrometer that measures solar reflected and backscattered light in a selected range of the ultraviolet and visible spectrum. The instrument has a 2600-km-wide viewing swath, and it is capable of daily, global contiguous mapping. We developed and implemented a surface ultraviolet (UV) irradiance algorithm for OMI that produces noontime surface spectral UV irradiance estimates at four wavelengths (305, 310, 324, and 380 nm). Additionally, noontime erythemal dose rate and the erythemal daily dose are estimated. The OMI surface UV algorithm inherits from the surface UV algorithm developed by NASA Goddard Space Flight Center for the Total Ozone Mapping Spectrometer (TOMS). The OMI surface UV irradiance products are produced and archived in HDF5-EOS format by Finnish Meteorological Institute. The accuracy of the surface UV estimates depend on UV wavelength and atmospheric and other geolocation specific conditions ranging from 7% to 30%. A postprocessing aerosol correction can be applied at sites with additional ground-based measurements of the aerosol absorption optical thickness. The current OMI surface UV product validation plan is presented.