Comprehensive Semantic Segmentation on High Resolution UAV Imagery for Natural Disaster Damage Assessment

dc.contributor.authorRahnemoonfar, Maryam
dc.contributor.authorChowdhury, Tashnim
dc.contributor.authorMurphy, Robin
dc.contributor.authorFernandes, Odair
dc.date.accessioned2020-11-02T19:46:41Z
dc.date.available2020-11-02T19:46:41Z
dc.date.issued2020-09-02
dc.description.abstractIn this paper, we present a large-scale hurricane Michael dataset for visual perception in disaster scenarios, and analyze state-of-the-art deep neural network models for semantic segmentation. The dataset consists of around 2000 high-resolution aerial images, with annotated ground-truth data for semantic segmentation. We discuss the challenges of the dataset and train the state-of-the-art methods on this dataset to evaluate how well these methods can recognize the disaster situations. Finally, we discuss challenges for future research.en_US
dc.description.sponsorshipThis work is supported in part by Microsoft. Annotations are performed on the V7 Darwin platform.en_US
dc.description.urihttps://arxiv.org/abs/2009.01193en_US
dc.format.extent10 pagesen_US
dc.genrejournal articles preprintsen_US
dc.identifierdoi:10.13016/m2aiqb-dezo
dc.identifier.citationMaryam Rahnemoonfar, Tashnim Chowdhury, Robin Murphy and Odair Fernandes, Comprehensive Semantic Segmentation on High Resolution UAV Imagery for Natural Disaster Damage Assessment, https://arxiv.org/abs/2009.01193en_US
dc.identifier.urihttp://hdl.handle.net/11603/19995
dc.language.isoen_USen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Information Systems Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.subjectUMBC Computer Vision and Remote Sensing Laboratory
dc.titleComprehensive Semantic Segmentation on High Resolution UAV Imagery for Natural Disaster Damage Assessmenten_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2009.01193.pdf
Size:
2.32 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: