First-principle-like reinforcement learning of nonlinear numerical schemes for conservation laws





Citation of Original Publication


This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.



In this study, we present a universal nonlinear numerical scheme design method enabled by multi-agent reinforcement learning (MARL). Different from contemporary supervised-learning-based and reinforcement-learning-based approaches, no reference data and special numerical treatments are used in the MARL-based method developed here; instead, a first-principle-like approach using fundamental computational fluid dynamics (CFD) principles, including total variation diminishing (TVD) and k-exact reconstruction, is used to design nonlinear numerical schemes. The third-order finite volume scheme is employed as the workhorse to test the performance of the MARL-based nonlinear numerical scheme design method. Numerical results demonstrate that the new MARL-based method is able to strike a balance between accuracy and numerical dissipation in nonlinear numerical scheme design, and outperforms the third-order MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws) with the van Albada limiter for shock capturing. Furthermore, we demonstrate for the first time that a numerical scheme trained from one-dimensional (1D) Burger's equation simulations can be directly used for numerical simulations of both 1D and 2D (two-dimensional constructions using the tensor product operation) Euler equations. The working environment of the MARL-based numerical scheme design concepts can incorporate, in general, all types of numerical schemes as simulation machines.