On weighted multivariate sign functions

dc.contributor.authorMajumdar, Subhabrata
dc.contributor.authorChatterjee, Snigdhansu
dc.date.accessioned2025-03-11T14:43:06Z
dc.date.available2025-03-11T14:43:06Z
dc.date.issued2022-05-21
dc.description.abstractMultivariate sign functions are often used for robust estimation and inference. We propose using data dependent weights in association with such functions. The proposed weighted sign functions retain desirable robustness properties, while significantly improving efficiency in estimation and inference compared to unweighted multivariate sign-based methods. Using weighted signs, we demonstrate methods of robust location estimation and robust principal component analysis. We extend the scope of using robust multivariate methods to include robust sufficient dimension reduction and functional outlier detection. Several numerical studies and real data applications demonstrate the efficacy of the proposed methodology.
dc.description.sponsorshipThe research of SC is partially supported by the US National Science Foundation grants 1737918, 1939916 and 1939956 and a grant from Cisco Systems Inc.
dc.description.urihttps://www.sciencedirect.com/science/article/pii/S0047259X22000409
dc.format.extent19 pages
dc.genrejournal articles
dc.genrepostprints
dc.identifierdoi:10.13016/m2b0wh-9fke
dc.identifier.citationMajumdar, Subhabrata, and Snigdhansu Chatterjee. “On Weighted Multivariate Sign Functions.” Journal of Multivariate Analysis 191 (September 1, 2022): 105013. https://doi.org/10.1016/j.jmva.2022.105013.
dc.identifier.urihttps://doi.org/10.1016/j.jmva.2022.105013
dc.identifier.urihttp://hdl.handle.net/11603/37802
dc.language.isoen_US
dc.publisherElsevier
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mathematics and Statistics Department
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International CC BY-NC-ND 4.0 Deed
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectSufficient dimension reduction
dc.subjectOutlier detection
dc.subjectPrincipal component analysis
dc.subjectData depth
dc.subjectMultivariate sign
dc.titleOn weighted multivariate sign functions
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0002-7986-0470

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Weighted_Multivariate.pdf
Size:
1.84 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Weighted_Multvariate_Supplemental.zip
Size:
46.37 KB
Format:
Unknown data format