SeAC: SDN-Enabled Adaptive Clustering Technique for Social-Aware Internet of Vehicles

dc.contributor.authorAkbar, Aamir
dc.contributor.authorIbrar, Muhammad
dc.contributor.authorJan, Mian Ahmad
dc.contributor.authorWang, Lei
dc.contributor.authorShah, Nadir
dc.contributor.authorSong, Houbing
dc.date.accessioned2023-02-28T21:07:22Z
dc.date.available2023-02-28T21:07:22Z
dc.date.issued2023-01-23
dc.description.abstractSince millions of smart vehicles in Internet-of-Vehicles (IoV) produce and relay data to analyze road conditions, creating social networks of vehicles in IoV is an important factor for the future Intelligent Transportation System (ITS). Likewise, the IoV architecture has seen vertical fragmentation of approaches used to meet the needs of different work domains. Therefore, IoV in combination with social networking, called Social IoV (SIoV), was created to address these alleged problems. However, one of the challenges in SIoV is that the social relations between vehicles grow and deplete very fast due to the extremely dynamic and unstable nature of the IoV. Therefore, a clustering-based scheme for SIoV, which is efficient in terms of stability can overcome this problem. We propose : an SDN-enabled adaptive clustering technique for SIoV. uses a 3D modeling approach to construct logical clusters that are based on factors such as physical location, social tie, and interest similarity among vehicles. Therefore, improves the stability of clusters and the efficiency of the underlying SIoV architecture. Additionally, by minimizing the trade-off between social and physical distances, lowers communication and computation costs. We evaluate, and the simulation results show that for two different topologies, the adaptive approach using can produce better results in terms of a stable cluster formation.en_US
dc.description.urihttps://ieeexplore.ieee.org/abstract/document/10024330en_US
dc.format.extent9 pagesen_US
dc.genrejournal articlesen_US
dc.genrepostprintsen_US
dc.identifierdoi:10.13016/m2x1qj-71eb
dc.identifier.citationA. Akbar, M. Ibrar, M. A. Jan, L. Wang, N. Shah and H. Song, "SeAC: SDN-Enabled Adaptive Clustering Technique for Social-Aware Internet of Vehicles," in IEEE Transactions on Intelligent Transportation Systems, doi: 10.1109/TITS.2023.3237321.en_US
dc.identifier.urihttps://doi.org/10.1109/TITS.2023.3237321
dc.identifier.urihttp://hdl.handle.net/11603/26910
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Information Systems Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rights© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.titleSeAC: SDN-Enabled Adaptive Clustering Technique for Social-Aware Internet of Vehiclesen_US
dc.typeTexten_US
dcterms.creatorhttps://orcid.org/0000-0003-2631-9223en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SeAC_SDN-Enabled_Adaptive_Clustering_Technique_for_Social-Aware_Internet_of_Vehicles.pdf
Size:
1.61 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: