Out of Distribution Data Detection Using Dropout Bayesian Neural Networks

dc.contributor.authorNguyen, Andre T.
dc.contributor.authorLu, Fred
dc.contributor.authorMunoz, Gary Lopez
dc.contributor.authorRaff, Edward
dc.contributor.authorNicholas, Charles
dc.contributor.authorHolt, James
dc.date.accessioned2022-03-24T19:23:32Z
dc.date.available2022-03-24T19:23:32Z
dc.date.issued2022-02-18
dc.description.abstractWe explore the utility of information contained within a dropout based Bayesian neural network (BNN) for the task of detecting out of distribution (OOD) data. We first show how previous attempts to leverage the randomized embeddings induced by the intermediate layers of a dropout BNN can fail due to the distance metric used. We introduce an alternative approach to measuring embedding uncertainty, justify its use theoretically, and demonstrate how incorporating embedding uncertainty improves OOD data identification across three tasks: image classification, language classification, and malware detection.en_US
dc.description.urihttps://arxiv.org/abs/2202.08985en_US
dc.format.extent16 pagesen_US
dc.genrejournal articlesen_US
dc.genrepreprintsen_US
dc.identifierdoi:10.13016/m2rrcz-idop
dc.identifier.urihttps://doi.org/10.48550/arXiv.2202.08985
dc.identifier.urihttp://hdl.handle.net/11603/24426
dc.language.isoen_USen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.en_US
dc.titleOut of Distribution Data Detection Using Dropout Bayesian Neural Networksen_US
dc.typeTexten_US
dcterms.creatorhttps://orcid.org/0000-0001-7131-6879en_US
dcterms.creatorhttps://orcid.org/0000-0002-9900-1972en_US
dcterms.creatorhttps://orcid.org/0000-0001-9494-7139en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2202.08985.pdf
Size:
777.93 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: