Eyeballing Combinatorial Problems: A Case Study of Using Multimodal Large Language Models to Solve Traveling Salesman Problems

dc.contributor.authorElhenawy, Mohammed
dc.contributor.authorAbdelhay, Ahmed
dc.contributor.authorAlhadidi, Taqwa I.
dc.contributor.authorAshqar, Huthaifa
dc.contributor.authorJaradat, Shadi
dc.contributor.authorJaber, Ahmed
dc.contributor.authorGlaser, Sebastien
dc.contributor.authorRakotonirainy, Andry
dc.date.accessioned2024-10-28T14:31:09Z
dc.date.available2024-10-28T14:31:09Z
dc.date.issued2024-06-11
dc.description.abstractMultimodal Large Language Models (MLLMs) have demonstrated proficiency in processing di-verse modalities, including text, images, and audio. These models leverage extensive pre-existing knowledge, enabling them to address complex problems with minimal to no specific training examples, as evidenced in few-shot and zero-shot in-context learning scenarios. This paper investigates the use of MLLMs' visual capabilities to 'eyeball' solutions for the Traveling Salesman Problem (TSP) by analyzing images of point distributions on a two-dimensional plane. Our experiments aimed to validate the hypothesis that MLLMs can effectively 'eyeball' viable TSP routes. The results from zero-shot, few-shot, self-ensemble, and self-refine zero-shot evaluations show promising outcomes. We anticipate that these findings will inspire further exploration into MLLMs' visual reasoning abilities to tackle other combinatorial problems.
dc.description.urihttps://arxiv.org/abs/2406.06865v1
dc.format.extent19 pages
dc.genrejournal articles
dc.genrepreprints
dc.identifierdoi:10.13016/m2pojb-6umd
dc.identifier.urihttps://doi.org/10.48550/arXiv.2406.06865
dc.identifier.urihttp://hdl.handle.net/11603/36802
dc.language.isoen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Data Science
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleEyeballing Combinatorial Problems: A Case Study of Using Multimodal Large Language Models to Solve Traveling Salesman Problems
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0002-6835-8338

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2406.06865v1.pdf
Size:
929.39 KB
Format:
Adobe Portable Document Format