Observations and Modeling of Turbulence in the Solar Wind






Citation of Original Publication

Goldstein, M.L. (2009). Observations and Modeling of Turbulence in the Solar Wind. In: Hasan, S.S., Gangadhara, R.T., Krishan, V. (eds) Turbulence, Dynamos, Accretion Disks, Pulsars and Collective Plasma Processes. Astrophysics and Space Science Proceedings. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8868-1_2


This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain Mark 1.0



Alfvénic fluctuations are a ubiquitous component of the solar wind. Evidence from many spacecrafts indicate that the fluctuations are convected out of the solar corona with relatively flat power spectra and constitute a source of free energy for a turbulent cascade of magnetic and kinetic energy to high wave numbers. Observations and simulations support the conclusion that the cascade evolves most rapidly in the vicinity of velocity shears and current sheets. Numerical solutions of the magnetohydrodynamic equations have elucidated the role of expansion on the evolution of the turbulence. Such studies are clarifying not only how a turbulent cascade develops, but also the nature of the symmetries of the turbulence.