Tropical Cyclones Feed More Heavy Rain in a Warmer Climate

Date

2007-01-01

Department

Program

Citation of Original Publication

Rights

This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain Mark 1.0

Subjects

Abstract

The possible linkage of tropical cyclones (TC) to global warming is a hotly debated scientific topic, with immense societal impacts. Most of the debate has been focused on the issue of uncertainty in the use of non-research quality data for long-term trend analyses, especially with regard to TC intensity provided by TC forecasting centers. On the other hand, it is well known that TCs are associated with heavy rain during the processes of genesis and intensification, and that there are growing evidences that rainfall characteristics (not total rainfall) are most likely to be affected by global warming. Yet, satellite rainfall data have not been exploited in any recent studies of linkage between tropical cyclones (TC) and global warming. This is mostly due to the large uncertainties associated with detection of long-term trend in satellite rainfall estimates over the ocean. This problem, as we demonstrate in this paper, can be alleviated by examining rainfall distribution, rather than rainfall total. This paper is the first to use research-quality, satellite-derived rainfall from TRMM and GPCP over the tropical oceans to estimate shift in rainfall distribution during the TC season, and its relationships with TCs, and sea surface temperature (SST) in the two major ocean basins, the northern Atlantic and the northern Pacific for 1979-2005. From the rainfall distribution, we derive the TC contributions to rainfall in various extreme rainfall categories as a function to time. Our results show a definitive trend indicating that TCs are contributing increasingly to heavier rain events, i.e., intense TC's are more frequent in the last 27 years. The TC contribution to top 5% heavy rain has nearly doubled in the last two decades in the North Atlantic, and has increased by about 10% in the North Pacific. The different rate of increase in TC contribution to heavy rain may be related to the different rates of different rate of expansion of the warm pool (SST >2S0 C) area in the two oceans.