Offline RL+CKG: A hybrid AI model for cybersecurity tasks

dc.contributor.authorPiplai, Aritran
dc.contributor.authorJoshi, Anupam
dc.contributor.authorFinin, Tim
dc.date.accessioned2023-04-06T17:51:30Z
dc.date.available2023-04-06T17:51:30Z
dc.date.issued2023
dc.descriptionProceedings of the AAAI 2023 Spring Symposium on Challenges Requiring the Combination of Machine Learning and Knowledge Engineering (AAAI-MAKE 2023), Hyatt Regency, San Francisco Airport, California, USA, March 27-29, 2023
dc.description.abstractAI models for cybersecurity have to detect and defend against constantly evolving cyber threats. Much efort is spent building defenses for zero days and unseen variants of known cyber-attacks. Current AI models for cybersecurity struggle with these yet unseen threats due to the constantly evolving nature of threat vectors, vulnerabilities, and exploits. This paper shows that cybersecurity AI models will be improved and more general if we include semi-structured representations of background knowledge. This could include information about the software and systems, as well as information obtained from observing the behavior of malware samples captured and detonated in honeypots. We describe how we can transfer this knowledge into forms that the RL models can directly use for decision-making purposes.en_US
dc.description.sponsorshipThis work was supported by the National Security Agency and National Science Foundation award 2114892. We thank researchers from the University of Texas at San Antonio for their data collection infrastructure and for sharing collected malware behavior data.en_US
dc.description.urihttps://ceur-ws.org/Vol-3433/short1.pdfen_US
dc.format.extent9 pagesen_US
dc.genreconference papers and proceedingsen_US
dc.genrepostprintsen_US
dc.identifierdoi:10.13016/m23kk9-fstb
dc.identifier.citationPiplai, Aritran, Anupam Joshi, and Tim Finin. “Offline RL+CKG: A Hybrid AI Model for Cybersecurity Tasks.” Edited by A. Martin, K. Hinkelmann, H.-G. Fill, A. Gerber, D. Lenat, R. Stolle, and F. van Harmelen. Proceedings of the AAAI 2023 Spring Symposium on Challenges Requiring the Combination of Machine Learning and Knowledge Engineering (AAAI-MAKE 2023), April 2023. https://ceur-ws.org/Vol-3433/short1.pdf
dc.identifier.urihttp://hdl.handle.net/11603/27420
dc.language.isoen_USen_US
dc.publisherAAAI
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subjectUMBC Ebiquity Research Group
dc.titleOffline RL+CKG: A hybrid AI model for cybersecurity tasksen_US
dc.typeTexten_US
dcterms.creatorhttps://orcid.org/0000-0002-8641-3193en_US
dcterms.creatorhttps://orcid.org/0000-0002-6593-1792en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1180.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: