Testing particle acceleration in blazar jets with continuous high-cadence optical polarization observations

Department

Program

Citation of Original Publication

Liodakis, Ioannis, Sebastian Kiehlmann, Alan P. Marscher, Haocheng Zhang, Dmitry Blinov, et al. “Testing Particle Acceleration in Blazar Jets with Continuous High-Cadence Optical Polarization Observations.” Astronomy & Astrophysics, July 9, 2024. https://doi.org/10.1051/0004-6361/202451037.

Rights

This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain

Subjects

Abstract

Variability can be the pathway to understanding the physical processes in astrophysical jets. However, the high-cadence observations required to test particle acceleration models are still missing. Here we report on the first attempt to produce continuous, > 24 hour polarization light curves of blazars using telescopes distributed across the globe, following the rotation of the Earth, to avoid the rising Sun. Our campaign involved 16 telescopes in Asia, Europe, and North America. We observed BL Lacertae and CGRaBS J0211+1051 for a combined 685 telescope hours. We find large variations in the polarization degree and angle for both sources on sub-hour timescales as well as a $ rotation of the polarization angle in CGRaBS J0211+1051 in less than two days. We compared our high-cadence observations to particle-in-cell magnetic reconnection and turbulent plasma simulations. We find that although the state-of-the-art simulation frameworks can produce a large fraction of the polarization properties, they do not account for the entirety of the observed polarization behavior in blazar jets.