Analyzing the Quantum Annealing Approach for Solving Linear Least Squares Problems
Loading...
Links to Files
Permanent Link
Author/Creator
Author/Creator ORCID
Date
2018-09-27
Type of Work
Department
Program
Citation of Original Publication
Rights
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Abstract
With the advent of quantum computers, researchers are exploring if quantum mechanics can be leveraged to solve important problems in ways that may provide advantages not possible with conventional or classical methods. A previous work by O'Malley and Vesselinov in 2016 briefly explored using a quantum annealing machine for solving linear least squares problems for real numbers. They suggested that it is best suited for binary and sparse versions of the problem. In our work, we propose a more compact way to represent variables using two's and one's complement on a quantum annealer. We then do an in-depth theoretical analysis of this approach, showing the conditions for which this method may be able to outperform the traditional classical methods for solving general linear least squares problems. Finally, based on our analysis and observations, we discuss potentially promising areas of further research where quantum annealing can be especially beneficial.