A Bayesian Methodology towards Automatic Ontology Mapping
dc.contributor.author | Ding, Zhongli | |
dc.contributor.author | Peng, Yun | |
dc.contributor.author | Pan, Rong | |
dc.contributor.author | Yu, Yang | |
dc.date.accessioned | 2018-12-07T20:19:29Z | |
dc.date.available | 2018-12-07T20:19:29Z | |
dc.date.issued | 2005-07-09 | |
dc.description | Proceedings of the AAAI-05 C&O Workshop on Contexts and Ontologies: Theory, Practice and Applications | en_US |
dc.description.abstract | This paper presents our ongoing effort on developing a principled methodology for automatic ontology mapping based on BayesOWL, a probabilistic framework we developed for modeling uncertainty in semantic web. The pro-posed method includes four components: 1) learning prob-abilities (priors about concepts, conditionals between sub-concepts and superconcepts, and raw semantic similarities between concepts in two different ontologies) using Naive Bayes text classification technique, by explicitly associating a concept with a group of sample documents retrieved and selected automatically from World Wide Web (WWW); 2) representing in OWL the learned probability information concerning the entities and relations in given ontologies; 3) using the BayesOWL framework to automatically translate given ontologies into the Bayesian network (BN) structures and to construct the conditional probability tables (CPTs) of a BN from those learned priors or conditionals, with reason-ing services within a single ontology supported by Bayesian inference; and 4) taking a set of learned initial raw similarities as input and finding new mappings between concepts from two different ontologies as an application of our formalized BN mapping theory that is based on evidential reasoning across two BNs. | en_US |
dc.description.sponsorship | This work was supported in part by DARPA contract F30602-97-1- 0215 and NSF award IIS-0326460. | en_US |
dc.description.uri | https://www.aaai.org/Papers/Workshops/2005/WS-05-01/WS05-01-011.pdf | en_US |
dc.format.extent | 8 pages | en_US |
dc.genre | conference papers and proceedings preprints | en_US |
dc.identifier | doi:10.13016/M2H41JR4G | |
dc.identifier.citation | Zhongli Ding, Yun Peng, Rong Pan, and Yang Yu, A Bayesian Methodology towards Automatic Ontology Mapping, Proceedings of the AAAI-05 C&O Workshop on Contexts and Ontologies: Theory, Practice and Applications, https://www.aaai.org/Papers/Workshops/2005/WS-05-01/WS05-01-011.pdf | en_US |
dc.identifier.uri | http://hdl.handle.net/11603/12190 | |
dc.language.iso | en_US | en_US |
dc.publisher | AAAI | en_US |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC Computer Science and Electrical Engineering Department Collection | |
dc.relation.ispartof | UMBC Faculty Collection | |
dc.relation.ispartof | UMBC Student Collection | |
dc.rights | This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author. | |
dc.subject | bayesian reasoning | en_US |
dc.subject | ontology | en_US |
dc.subject | semantice web | en_US |
dc.subject | text classification | en_US |
dc.subject | uncertainty | en_US |
dc.subject | UMBC Ebiquity Research Group | en_US |
dc.title | A Bayesian Methodology towards Automatic Ontology Mapping | en_US |
dc.type | Text | en_US |