Investigating Symbolic Triggers of Hallucination in Gemma Models Across HaluEval and TruthfulQA
| dc.contributor.author | Lamba, Naveen | |
| dc.contributor.author | Tiwari, Sanju | |
| dc.contributor.author | Gaur, Manas | |
| dc.date.accessioned | 2025-09-18T14:22:25Z | |
| dc.date.issued | 2025-09 | |
| dc.description | SymGenAI4Sci 2025: First International Workshop on Symbolic and Generative AI for Science, September 3–5, 2025, Vienna, Austria | |
| dc.description.abstract | Hallucination in Large Language Models(LLMs) is a well studied problem. However, the properties that make LLM intrinsically vulnerable to hallucinations have not been identified and studied. This research identifies and characterizes the key properties, allowing us to pinpoint vulnerabilities within the model’s internal mechanisms. To solidify on these properties, we utilized two established datasets, HaluEval and TruthfulQA and convert their existing format of question answering into various other formats to narrow down these properties as the reason for the hallucinations. Our findings reveal that hallucination percentages across symbolic properties are notably high for Gemma-2-2B, averaging 79.0% across tasks and datasets. With increased model scale, hallucination drops to 73.6% for Gemma-2-9B and 63.9% for Gemma-2-27B, reflecting a 15 percentage point reduction overall. Although the hallucination rate decreases as the model size increases, a substantial amount of hallucination caused by symbolic properties still persists. This is especially evident for modifiers (ranging from 84.76% to 94.98%) and named entities (ranging from 83.87% to 93.96%) across all Gemma models and both datasets. These findings indicate that symbolic elements continue to confuse the models, pointing to a fundamental weakness in how these LLMs process such inputs—regardless of their scale. | |
| dc.description.uri | https://2025-eu.semantics.cc/ | |
| dc.format.extent | 13 pages | |
| dc.genre | conference papers and proceedings | |
| dc.genre | postprints | |
| dc.identifier | doi:10.13016/m2zrwq-xjv5 | |
| dc.identifier.uri | http://hdl.handle.net/11603/40241 | |
| dc.language.iso | en | |
| dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
| dc.relation.ispartof | UMBC Computer Science and Electrical Engineering Department | |
| dc.relation.ispartof | UMBC Faculty Collection | |
| dc.rights | Attribution 4.0 International | |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
| dc.subject | UMBC Ebiquity Research Group | |
| dc.title | Investigating Symbolic Triggers of Hallucination in Gemma Models Across HaluEval and TruthfulQA | |
| dc.type | Text | |
| dcterms.creator | https://orcid.org/0000-0002-5411-2230 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Investigating_Symbolic_Triggers_of_Hallucination_in_Gemma_Models.pdf
- Size:
- 1.07 MB
- Format:
- Adobe Portable Document Format
