Controlling the speed and trajectory of evolution with counterdiabatic driving

Author/Creator ORCID





Citation of Original Publication

Shamreen Iram et al., Controlling the speed and trajectory of evolution with counterdiabatic driving, Nature Physics, volume 17, pages 135–142, 24 August, 2020;


This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Attribution-NonCommercial 4.0 International



The pace and unpredictability of evolution are critically relevant in a variety of modern challenges: combating drug resistance in pathogens and cancer, understanding how species respond to environmental perturbations like climate change, and developing artificial selection approaches for agriculture. Great progress has been made in quantitative modeling of evolution using fitness landscapes, allowing a degree of prediction for future evolutionary histories. Yet fine-grained control of the speed and the distributions of these trajectories remains elusive. We propose an approach to achieve this using ideas originally developed in a completely different context – counterdiabatic driving to control the behavior of quantum states for applications like quantum computing and manipulating ultra-cold atoms. Implementing these ideas for the first time in a biological context, we show how a set of external control parameters (i.e. varying drug concentrations / types, temperature, nutrients) can guide the probability distribution of genotypes in a population along a specified path and time interval. This level of control, allowing empirical optimization of evolutionary speed and trajectories, has myriad potential applications, from enhancing adaptive therapies for diseases, to the development of thermotolerant crops in preparation for climate change, to accelerating bioengineering methods built on evolutionary models, like directed evolution of biomolecules.