Tag propagation based recommendation across diverse social media

dc.contributor.authorYang, Deqing
dc.contributor.authorXiao, Yanghua
dc.contributor.authorSong, Yangqiu
dc.contributor.authorZhang, Junjun
dc.contributor.authorZhang, Kezun
dc.contributor.authorWang, Wei
dc.date.accessioned2025-06-05T14:03:05Z
dc.date.available2025-06-05T14:03:05Z
dc.date.issued2014-04-07
dc.descriptionWWW '14 Companion: Proceedings of the 23rd International Conference on World Wide Web
dc.description.abstractMany real applications demand accurate cross-domain recommendation, e.g., recommending a Weibo (the largest Chinese Twitter) user with the products in an e-commerce Web site. Since many social media have rich tags on both items or users, tag-based profiling became popular for recommendation. However, most previous recommendation approaches have low effectiveness in handling sparse data or matching tags from different social media. Addressing these problems, we first propose an optimized local tag propagation algorithm to generate tags for profiling Weibo users and then use a Chinese knowledge graph accompanied by an improved ESA (explicit semantic analysis) for semantic matching of cross-domain tags. Empirical comparisons to the state-of-the-art approaches justify the efficiency and effectiveness of our approaches.
dc.description.urihttps://dl.acm.org/doi/10.1145/2567948.2577285
dc.format.extent2 pages
dc.genreconference papers and proceedings
dc.genrepreprints
dc.identifierdoi:10.13016/m2giwz-leti
dc.identifier.citationYang, Deqing, Yanghua Xiao, Yangqiu Song, Junjun Zhang, Kezun Zhang, and Wei Wang. “Tag Propagation Based Recommendation across Diverse Social Media.” In Proceedings of the 23rd International Conference on World Wide Web, 407–8. WWW ’14 Companion. New York, NY, USA: Association for Computing Machinery, 2014. https://doi.org/10.1145/2567948.2577285.
dc.identifier.urihttps://doi.org/10.1145/2567948.2577285
dc.identifier.urihttp://hdl.handle.net/11603/38651
dc.language.isoen_US
dc.publisherACM
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.titleTag propagation based recommendation across diverse social media
dc.typeText

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
pos029yang.pdf
Size:
396.45 KB
Format:
Adobe Portable Document Format