Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae)
| dc.contributor.author | Li, Yantao | |
| dc.contributor.author | Sommerfeld, Milton | |
| dc.contributor.author | Chen, Feng | |
| dc.contributor.author | Hu, Qiang | |
| dc.date.accessioned | 2025-07-09T17:56:03Z | |
| dc.date.issued | 2010-06-01 | |
| dc.description.abstract | The green alga Haematococcus pluvialis produces large amounts of the pink carotenoid astaxanthin under high photon flux density (PFD) and other oxidative stress conditions. However, the regulation and physiological role of carotenogenesis leading to astaxanthin formation is not well understood. Comparative transcriptional expression of five carotenoid genes along with growth and pigment composition as a function of PFD was studied using a wild-type and an astaxanthin-overproduction mutant of H. pluvialis NIES144. The results indicate that astaxanthin biosynthesis was mainly under transcriptional control of the gene encoding carotenoid hydroxylase, and to a lesser extent, the genes encoding isopentenyl isomerase and phytoene desaturase, and to the least extent, the genes encoding phytoene synthase and carotenoid oxygenase. The expression of a plastid terminal oxidase (PTOX) gene ptox2 underwent transient up-regulation under elevated PFDs, suggesting that PTOX may be functionally coupled with phytoene desaturase through the plastoquinone pool and may play a role in reducing redox-potential-dependent and oxygen-concentration-dependent formation of reactive oxygen species in the chloroplast. Over-expression of both the carotenogenic and PTOX genes confers to the astaxanthin-overproduction mutant more effective photoprotective capability than that of the wild type under photooxidative stress. | |
| dc.description.sponsorship | This work was partially supported by Science Foundation Arizona Small Business Catalytic Program, the Research Grants Council of Hong Kong, and the University of Hong Kong Outstanding Young Researcher Award and Outstanding Research Student Supervisor Award. | |
| dc.description.uri | https://link.springer.com/article/10.1007/s10811-009-9453-6 | |
| dc.format.extent | 11 pages | |
| dc.genre | journal articles | |
| dc.identifier | doi:10.13016/m25nzr-itrg | |
| dc.identifier.citation | Li, Yantao, Milton Sommerfeld, Feng Chen, and Qiang Hu. "Effect of Photon Flux Densities on Regulation of Carotenogenesis and Cell Viability of Haematococcus Pluvialis (Chlorophyceae)". Journal of Applied Phycology 22, no. 3 (1 June 2010): 253–63. https://doi.org/10.1007/s10811-009-9453-6. | |
| dc.identifier.uri | https://doi.org/10.1007/s10811-009-9453-6 | |
| dc.identifier.uri | http://hdl.handle.net/11603/39366 | |
| dc.language.iso | en_US | |
| dc.publisher | Springer Nature | |
| dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
| dc.relation.ispartof | UMBC Department of Marine Biotechnology | |
| dc.relation.ispartof | UMBC Chemistry & Biochemistry Department | |
| dc.relation.ispartof | UMBC Faculty Collection | |
| dc.rights | Attribution-NonCommercial 2.0 Generic | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc/2.0/deed.en | |
| dc.subject | Synechocystis | |
| dc.subject | Chlamydomonas reinhardtii | |
| dc.subject | Photosystem II | |
| dc.subject | mRNA expression | |
| dc.subject | Astaxanthin | |
| dc.subject | Photobiology | |
| dc.subject | Gene Regulation | |
| dc.subject | Haematococcus pluvialis | |
| dc.subject | Oxidative stress | |
| dc.subject | Photosystem I | |
| dc.subject | High light | |
| dc.title | Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae) | |
| dc.type | Text | |
| dcterms.creator | https://orcid.org/0000-0001-7545-1883 |
Files
Original bundle
1 - 1 of 1
