Zero-backscatter cloak for aspherical particles using a generalized DDA formalism
Loading...
Links to Files
Author/Creator
Author/Creator ORCID
Date
2008-01-30
Type of Work
Department
Program
Citation of Original Publication
Yu You, George W. Kattawar, Peng-Wang Zhai, and Ping Yang, "Zero-backscatter cloak for aspherical particles using a generalized DDA formalism," Opt. Express 16, 2068-2079 (2008)
Rights
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Subjects
Abstract
The Discrete Dipole Approximation (DDA) formalism has been generalized to materials with permeabilities µ ≠ 1 to study the scattering properties of impedance-matched aspherical particles and cloaked spheres. We have shown analytically that any impedance-matched particle with a four-fold rotational symmetry with respect to the direction of the incident radiation has the feature of zero backscatter. Moreover, an impedance-matched coat with the aforementioned symmetry property acting on an irregular dielectric particle with the same symmetry property can substantially reduce the backscatter. This leads to a substantial reduction of the signals from an object being detected by a monostatic radar/lidar system. The DDA simulation also provides accurate information about electric field distributions in the vicinity of a cloaked sphere.