WG: Model Explainability and Interpretability

Date

Type of Work

Department

Program

Citation of Original Publication

Keim, Daniel A. et al. "WG: Model Explainability and Interpretability." Report from Dagstuhl Seminar 22191 Visual Text Analytics (2022). https://drops.dagstuhl.de/opus/volltexte/2022/17443/pdf/dagrep_v012_i005_p037_22191.pdf

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Attribution 4.0 International (CC BY 4.0)

Subjects

Abstract

Text data is one of the most abundant types of data available, produced every day across all domains of society. Understanding the contents of this data can support important policy decisions, help us understand society and culture, and improve business processes. While machine learning techniques are growing in their power for analyzing text data, there is still a clear role for human analysis and decision-making. This seminar explored the use of visual analytics applied to text data as a means to bridge the complementary strengths of people and computers. The field of visual text analytics applies visualization and interaction approaches which are tightly coupled to natural language processing systems to create analysis processes and systems for examining text and multimedia data. During the seminar, interdisciplinary working groups of experts from visualization, natural language processing, and machine learning examined seven topic areas to reflect on the state of the field, identify gaps in knowledge, and create an agenda for future cross-disciplinary research. This report documents the program and the outcomes of Dagstuhl Seminar 22191 “Visual Text Analytics”.