Automated Virtual Product Placement and Assessment in Images using Diffusion Models
dc.contributor.author | Alam, Mohammad Mahmudul | |
dc.contributor.author | Sokhandan, Negin | |
dc.contributor.author | Goodman, Emmett | |
dc.date.accessioned | 2024-05-29T14:38:03Z | |
dc.date.available | 2024-05-29T14:38:03Z | |
dc.date.issued | 2024-05-02 | |
dc.description | 6th AI for Content Creation (AI4CC) workshop at CVPR 2024 | |
dc.description.abstract | In Virtual Product Placement (VPP) applications, the discrete integration of specific brand products into images or videos has emerged as a challenging yet important task. This paper introduces a novel three-stage fully automated VPP system. In the first stage, a language-guided image segmentation model identifies optimal regions within images for product inpainting. In the second stage, Stable Diffusion (SD), fine-tuned with a few example product images, is used to inpaint the product into the previously identified candidate regions. The final stage introduces an ‘Alignment Module’, which is designed to effectively sieve out lowquality images. Comprehensive experiments demonstrate that the Alignment Module ensures the presence of the intended product in every generated image and enhances the average quality of images by 35%. The results presented in this paper demonstrate the effectiveness of the proposed VPP system, which holds significant potential for transforming the landscape of virtual advertising and marketing strategies. | |
dc.description.uri | http://arxiv.org/abs/2405.01130 | |
dc.format.extent | 9 pages | |
dc.genre | conference papers and proceedings | |
dc.genre | postprints | |
dc.identifier | doi:10.13016/m2zohj-kwd1 | |
dc.identifier.uri | https://doi.org/10.48550/arXiv.2405.01130 | |
dc.identifier.uri | http://hdl.handle.net/11603/34295 | |
dc.language.iso | en_US | |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC Student Collection | |
dc.relation.ispartof | UMBC Computer Science and Electrical Engineering Department | |
dc.rights | CC BY 4.0 DEED Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Computer Science - Computer Vision and Pattern Recognition | |
dc.title | Automated Virtual Product Placement and Assessment in Images using Diffusion Models | |
dc.type | Text | |
dcterms.creator | https://orcid.org/0009-0004-3054-5914 |
Files
Original bundle
1 - 1 of 1