Simultaneous spectral decomposition in Euclidean Jordan algebras and related systems

dc.contributor.authorGowda, M. Seetharama
dc.date.accessioned2021-05-24T21:03:26Z
dc.date.available2021-05-24T21:03:26Z
dc.date.issued2021-07-31
dc.description.abstractThis article deals with necessary and sufficient conditions for a family of elements in a Euclidean Jordan algebra to have simultaneous (order) spectral decomposition. Motivated by a well-known matrix theory result that any family of pairwise commuting complex Hermitian matrices is simultaneously (unitarily) diagonalizable, we show that in the setting of a general Euclidean Jordan algebra, any family of pairwise operator commuting elements has a simultaneous spectral decomposition, i.e., there exists a common Jordan frame {e₁, e₂, . . . , eₙ} relative to which every element in the given family has the eigenvalue decomposition of the form λ₁e₁ + λ₂e₂ + · · · + λₙeₙ. The simultaneous order spectral decomposition further demands the ordering of eigenvalues λ₁ ≥ λ₂ ≥ · · · ≥ λₙ. We characterize this by pairwise strong operator commutativity condition (x, y) = (λ(x), λ(y)), or equivalently, λ(x + y) = λ(x) + λ(y), where λ(x) denotes the vector of eigenvalues of x written in the decreasing order. Going beyond Euclidean Jordan algebras, we formulate commutativity conditions in the setting of the so-called Fan-Theobald-von Neumann system that includes normal decomposition systems (Eaton triples) and certain systems induced by hyperbolic polynomials.en_US
dc.description.urihttps://www.tandfonline.com/doi/abs/10.1080/03081087.2021.1960259?en_US
dc.format.extent15 pagesen_US
dc.genrejournal articles preprintsen_US
dc.identifierdoi:10.13016/m2pn21-atcs
dc.identifier.citationM. Seetharama Gowda; Simultaneous spectral decomposition in Euclidean Jordan algebras and related systems; Linear and Multilinear Algebra , 31 July, 2021; https://doi.org/10.1080/03081087.2021.1960259
dc.identifier.urihttp://hdl.handle.net/11603/21611
dc.identifier.urihttps://doi.org/10.1080/03081087.2021.1960259
dc.language.isoen_USen_US
dc.publisherTaylor & Francis
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mathematics Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.titleSimultaneous spectral decomposition in Euclidean Jordan algebras and related systemsen_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
trGOW21-01.pdf
Size:
263.34 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: