Hydrogen escaping from a pair of exoplanets smaller than Neptune
Loading...
Links to Files
Author/Creator ORCID
Date
2025-02
Type of Work
Department
Program
Citation of Original Publication
Loyd, R. O. Parke, Ethan Schreyer, James E. Owen, James G. Rogers, Madelyn I. Broome, Evgenya L. Shkolnik, Ruth Murray-Clay, et al. "Hydrogen Escaping from a Pair of Exoplanets Smaller than Neptune." Nature 638, no. 8051 (February 2025): 636-39. https://doi.org/10.1038/s41586-024-08490-x.
Rights
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain
Public Domain
Subjects
Abstract
Exoplanet surveys have shown a class of abundant exoplanets smaller than Neptune on close, <100-day orbits1,2,3,4. These planets form two populations separated by a natural division at about 1.8 R⊕ termed the radius valley. It is uncertain whether these populations arose from separate dry versus water-rich formation channels, evolved apart because of long-term atmospheric loss or a combination of both5,6,7,8,9,10,11,12,13,14. Here we report observations of ongoing hydrogen loss from two sibling planets, TOI-776 b (1.85 ± 0.13 R⊕) and TOI-776 c (2.02 ± 0.14 R⊕), the sizes of which near the radius valley and mature (1–4 Gyr) age make them valuable for investigating the origins of the divided population of which they are a part. During the transits of these planets, absorption appeared against the Lyman-α emission of the host star, compatible with hydrogen escape at rates equivalent to 0.03–0.6% and 0.1–0.9% of the total mass per billion years of each planet, respectively. Observations of the outer planet, TOI-776 c, are incompatible with an outflow of dissociated steam, suggesting both it and its inner sibling formed in a dry environment. These observations support the strong role of hydrogen loss in the evolution of close-orbiting sub-Neptunes5,6,7,8,15,16.