WG: Bias and Bias Mitigation

dc.contributor.authorEndert, Alex
dc.contributor.authorChatzimparmpas, Angelos
dc.contributor.authorFokkens, Antske
dc.contributor.authorWeaver, Chris
dc.contributor.authorCollins, Christopher
dc.contributor.authorMaciejewski, Ross
dc.contributor.authorPan, Shimei
dc.contributor.authorLandesberger, Tatiana von
dc.date.accessioned2023-01-04T23:16:34Z
dc.date.available2023-01-04T23:16:34Z
dc.description.abstractThis discussion focused on definitions and categorization of bias (e.g., social bias, system bias, cognitive bias, and sample bias) and methods to identify and mitigate all in the context of text analysis and visualization. We (Figure 26) discussed the data processing pipelines from the NLP community and the data visualization community as a lens through which to discuss areas where bias can appear. A fundamental point when talking about bias is that biases can be found or introduced in every step of the pipeline. Locating bias in the pipeline can be a challenge. There can be bias in the data, this can be amplified or even introduced by the model, by choices on how to visualize the data, the transformations of the data as part of the visualization and in the eye of the beholder interpreting the results.en_US
dc.description.urihttps://drops.dagstuhl.de/opus/volltexte/2022/17443/pdf/dagrep_v012_i005_p037_22191.pdfen_US
dc.format.extent5 pagesen_US
dc.genrereportsen_US
dc.identifierdoi:10.13016/m2mcew-3zmc
dc.identifier.citationEndert, Alex et al. "WG: Bias and Bias Mitigation." Report from Dagstuhl Seminar 22191 Visual Text Analytics (2022). https://drops.dagstuhl.de/opus/volltexte/2022/17443/pdf/dagrep_v012_i005_p037_22191.pdfen_US
dc.identifier.urihttp://hdl.handle.net/11603/26549
dc.language.isoen_USen_US
dc.publisherDagstuhl Publishingen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Information Systems Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.titleWG: Bias and Bias Mitigationen_US
dc.typeTexten_US
dcterms.creatorhttps://orcid.org/0000-0002-5989-8543en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dagrep_v012_i005_p037_22191.pdf
Size:
895.07 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: