Validation of Sentinel-5P TROPOMI tropospheric NO₂ products by comparison with NO₂ measurements from airborne imaging, ground-based stationary, and mobile car DOAS measurements during the S5P-VAL-DE-Ruhr campaign
dc.contributor.author | Lange, Kezia | |
dc.contributor.author | Richter, Andreas | |
dc.contributor.author | Schönhardt, Anja | |
dc.contributor.author | Meier, Andreas C. | |
dc.contributor.author | Abuhassan, Nader | |
dc.contributor.author | et al | |
dc.date.accessioned | 2022-11-22T18:30:37Z | |
dc.date.available | 2022-11-22T18:30:37Z | |
dc.date.issued | 2022-10-25 | |
dc.description | Authors:- Kezia Lange , Andreas Richter , Anja Schönhardt , Andreas C. Meier , Tim Bösch , André Seyler , Kai Krause , Lisa K. Behrens , Folkard Wittrock , Alexis Merlaud , Frederik Tack , Caroline Fayt , Martina M. Friedrich , Ermioni Dimitropoulou , Michel Van Roozendael , Vinod Kumar , Sebastian Donner , Steffen Dörner , Bianca Lauster , Maria Razi , Christian Borger , Katharina Uhlmannsiek , Thomas Wagner , Thomas Ruhtz , Henk Eskes , Birger Bohn , Daniel Santana Diaz , Nader Abuhassan , Dirk Schüttemeyer , and John P. Burrows | en_US |
dc.description.abstract | Airborne imaging differential optical absorption spectroscopy (DOAS), ground-based stationary and car DOAS measurements were conducted during the S5P-VAL-DE-Ruhr campaign in September 2020. The campaign area is located in the Rhine-Ruhr region of North Rhine-Westphalia, Western Germany, which is a pollution hotspot in Europe comprising urban and large industrial emitters. The measurements are used to validate space-borne NO2 tropospheric vertical column density 5 data products from the Sentinel-5 Precursor (S5P) TROPOspheric Monitoring Instrument (TROPOMI). Seven flights were performed with the airborne imaging DOAS instrument for measurements of atmospheric pollution (AirMAP), providing measurements which were used to create continuous maps of NO2 in the layer below the aircraft. These flights cover many S5P ground pixels within an area of 30 km x 35 km and were accompanied by ground-based stationary measurements and three mobile car DOAS instruments. Stationary measurements were conducted by two Pandora, two zenith-sky and two 10 MAX-DOAS instruments distributed over three target areas. Ground-based stationary and car DOAS measurements are used to evaluate the AirMAP tropospheric NO2 vertical column densities and show high Pearson correlation coefficients of 0.87 and 0.89 and slopes of 0.93 ± 0.09 and 0.98 ± 0.02 for the stationary and car DOAS, respectively. Having a spatial resolution of about 100 m x 30 m, the AirMAP tropospheric NO2 vertical column density (VCD) data creates a link between the ground-based and the TROPOMI measurements with a resolution of 3.5 km x 5.5 km and is therefore well 1 https://doi.org/10.5194/amt-2022-264 Preprint. Discussion started: 25 October 2022 c Author(s) 2022. CC BY 4.0 License. 15 suited to validate the TROPOMI tropospheric NO2 VCD. The measurements on the seven flight days show strong NO2 variability, which is dependent on the different target areas, the weekday, and the meteorological conditions. The AirMAP campaign dataset is compared to the TROPOMI NO2 operational off-line (OFFL) V01.03.02 data product, the reprocessed NO2 data, using the V02.03.01 of the official L2 processor, provided by the Product Algorithm Laboratory (PAL), and several scientific TROPOMI NO2 data products. The TROPOMI data products and the AirMAP data are highly corre20 lated with correlation coefficients between 0.72 and 0.87, and slopes of 0.38 ± 0.02 to 1.02 ± 0.07. On average, TROPOMI tropospheric NO2 VCDs are lower than the AirMAP NO2 results. The slope increased from 0.38 ± 0.02 for the operational OFFL V01.03.02 product to 0.83 ± 0.06 after the improvements in the retrieval of the PAL V02.03.01 product were implemented. Different auxiliary data, such as spatially higher resolved a priori NO2 vertical profiles, surface reflectivity and the cloud treatment, are investigated using scientific TROPOMI tropospheric NO2 VCD data products to evaluate their impact on 25 the operational TROPOMI NO2 VCD data product. The comparison of the AirMAP campaign dataset to the scientific data products shows that the choice of surface reflectivity data base has a minor impact on the tropospheric NO2 VCD retrieval in the campaign region and season. In comparison, the replacement of the a priori NO2 profile in combination with the improvements in the retrieval of the PAL V02.03.01 product regarding cloud heights has a major impact on the tropospheric NO2 VCD retrieval and increases the slope from 0.88 ± 0.06 to 1.00 ± 0.07. This study demonstrates that the underestimation of 30 the TROPOMI tropospheric NO2 VCD product with respect to the validation dataset has been and can be further significantly improved | en_US |
dc.description.sponsorship | The European Space Agency (ESA; contract 4000128426/19/NL/FF/ab; QA4EO Atmospheric Composition Uncertainty Field Studies Project) is gratefully acknowledged for funding the Ruhr campaign. The Deutsches Zentrum für Luft- und Raumfahrt 725 (grant no. 50 EE 1709A) is gratefully acknowledged for financial support. Copernicus Sentinel-5P level-2 NO2 data are used in this study. Sentinel-5 Precursor is a European Space Agency (ESA) mission on behalf of the European Commission (EC). The TROPOMI payload is a joint development by ESA and the Netherlands Space Office (NSO). The Sentinel-5 Precursor ground-segment development has been funded by the ESA and with national contributions from the Netherlands, Germany, Belgium, and UK. We acknowledge the free use of the TROPOMI surface DLER database provided through the Sentinel-5p+ Innovation project of the European Space Agency (ESA). 730 The TROPOMI surface DLER database was created by the Royal Netherlands Meteorological Institute (KNMI). Authors acknowledge AERONET-Europe for providing calibration service. AERONET-Europe is part of ACTRIS-IMP project that received funding from the European Union (H2020-INFRADEV-2018-2020) under Grant Agreement No 871115. We would like to acknowledge the Umwelt- und Verbraucherschutzamt Stadt Köln for providing location and support for the Pandora Cologne measurement site and Ulrich Quass for providing location and support for the zenith-sky DOAS instrument. We thank the pilot of the aircraft, Jeremy Gordon, for his calm and professional 735 flights as well as his guidance in all matters related to the aircraft and the weather conditions. | en_US |
dc.description.uri | https://amt.copernicus.org/preprints/amt-2022-264/ | en_US |
dc.format.extent | 45 pages | en_US |
dc.genre | journal articles | en_US |
dc.genre | preprints | en_US |
dc.identifier | doi:10.13016/m2bzck-kcnw | |
dc.identifier.citation | Lange, K., Richter, A., Schönhardt, A., Meier, A. C., Bösch, T., Seyler, A., Krause, K., Behrens, L. K., Wittrock, F., Merlaud, A., Tack, F., Fayt, C., Friedrich, M. M., Dimitropoulou, E., Van Roozendael, M., Kumar, V., Donner, S., Dörner, S., Lauster, B., Razi, M., Borger, C., Uhlmannsiek, K., Wagner, T., Ruhtz, T., Eskes, H., Bohn, B., Santana Diaz, D., Abuhassan, N., Schüttemeyer, D., and Burrows, J. P.: Validation of Sentinel-5P TROPOMI tropospheric NO2 products by comparison with NO2 measurements from airborne imaging, ground-based stationary, and mobile car DOAS measurements during the S5P-VAL-DE-Ruhr campaign, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2022-264, in review, 2022. | en_US |
dc.identifier.uri | https://doi.org/10.5194/amt-2022-264 | |
dc.identifier.uri | http://hdl.handle.net/11603/26345 | |
dc.language.iso | en_US | en_US |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC Joint Center for Earth Systems Technology | |
dc.relation.ispartof | UMBC Faculty Collection | |
dc.rights | This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author. | en_US |
dc.rights | Attribution 4.0 International (CC BY 4.0) | * |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Validation of Sentinel-5P TROPOMI tropospheric NO₂ products by comparison with NO₂ measurements from airborne imaging, ground-based stationary, and mobile car DOAS measurements during the S5P-VAL-DE-Ruhr campaign | en_US |
dc.type | Text | en_US |