Solvent-mediated end-to-end assembly of gold nanorods
dc.contributor.author | Wang, Yiliang | |
dc.contributor.author | DePrince III, A. Eugene | |
dc.contributor.author | Gray, Stephen K. | |
dc.contributor.author | Lin, Xiao-Min | |
dc.contributor.author | Pelton, Matthew | |
dc.date.accessioned | 2023-08-14T19:12:44Z | |
dc.date.available | 2023-08-14T19:12:44Z | |
dc.date.issued | 2010-09-01 | |
dc.description.abstract | We demonstrate a new method for the bottom-up assembly of anisotropic nanoparticles, showing that alkanethiol molecules can induce controlled end-to-end assembly of gold nanorods in mixed water/acetonitrile solutions. The assembly is driven by solvent-mediated interactions among hydrophobic alkanethiol ligands selectively bound to the ends of the nanorods and among hydrophilic cetyltrimethylammonium bromide (CTAB) surfactants on the sides of the rods. It occurs only when the gold-nanorod samples have been aged for approximately two weeks. We compare the kinetics of solvent-mediated assembly using undecanethiol ligands to assembly processes driven by covalent bonding using α,ω-undecanedithiol ligands and processes driven by hydrogen bonding using 11-mercaptoundecanoic acid ligands. Our experiments demonstrate the different assembly mechanisms involved as well as the conditions needed to obtain selective end-to-end assembly. | en_US |
dc.description.sponsorship | Work at the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Transmission electron microscopy was performed at the Electron Microscopy Center for Materials Research at Argonne National Laboratory. | en_US |
dc.description.uri | https://pubs.acs.org/doi/10.1021/jz1010048 | en_US |
dc.format.extent | 7 pages | en_US |
dc.genre | journal articles | en_US |
dc.identifier | doi:10.13016/m2bpzv-jsmt | |
dc.identifier.citation | Wang, Yiliang, A. Eugene III DePrince, Stephen K. Gray, Xiao-Min Lin, and Matthew Pelton. “Solvent-Mediated End-to-End Assembly of Gold Nanorods.” The Journal of Physical Chemistry Letters 1, no. 18 (September 16, 2010): 2692–98. https://doi.org/10.1021/jz1010048. | en_US |
dc.identifier.uri | https://doi.org/10.1021/jz1010048 | |
dc.identifier.uri | http://hdl.handle.net/11603/29209 | |
dc.language.iso | en_US | en_US |
dc.publisher | ACS | en_US |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC Physics Department Collection | |
dc.rights | This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law. | en_US |
dc.rights | Public Domain Mark 1.0 | * |
dc.rights.uri | http://creativecommons.org/publicdomain/mark/1.0/ | * |
dc.title | Solvent-mediated end-to-end assembly of gold nanorods | en_US |
dc.type | Text | en_US |
dcterms.creator | https://orcid.org/0000-0002-6370-8765 | en_US |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.56 KB
- Format:
- Item-specific license agreed upon to submission
- Description: