Stochastic Galerkin methods for the steady-state Navier-Stokes equations

dc.contributor.authorSousedík, Bedřich
dc.contributor.authorElman, Howard C.
dc.date.accessioned2021-10-22T17:49:30Z
dc.date.available2021-10-22T17:49:30Z
dc.date.issued2016-04-14
dc.description.abstractWe study the steady-state Navier-Stokes equations in the context of stochastic finite element discretizations. Specifically, we assume that the viscosity is a random field given in the form of a generalized polynomial chaos expansion. For the resulting stochastic problem, we formulate the model and linearization schemes using Picard and Newton iterations in the framework of the stochastic Galerkin method, and we explore properties of the resulting stochastic solutions. We also propose a preconditioner for solving the linear systems of equations arising at each step of the stochastic (Galerkin) nonlinear iteration and demonstrate its effectiveness for solving a set of benchmark problems.en_US
dc.description.urihttps://arxiv.org/abs/1506.08899en_US
dc.format.extent23 pagesen_US
dc.genrejournal articlesen_US
dc.genrepreprintsen_US
dc.identifierdoi:10.13016/m2wop6-xozk
dc.identifier.citationSousedík, Bedřich; Elman, Howard C.; Stochastic Galerkin methods for the steady-state Navier-Stokes equations; Journal of Computational Physics, 316, 435-452en_US
dc.identifier.urihttp://hdl.handle.net/11603/23156
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mathematics Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.en_US
dc.titleStochastic Galerkin methods for the steady-state Navier-Stokes equationsen_US
dc.typeTexten_US
dcterms.creatorhttps://orcid.org/0000-0002-8053-8956en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1506.08899.pdf
Size:
1.8 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: