Parsing videos of actions with segmental grammars

dc.contributor.authorPirsiavash, Hamed
dc.contributor.authorRamanan, Deva
dc.date.accessioned2019-06-28T16:41:53Z
dc.date.available2019-06-28T16:41:53Z
dc.date.issued2014-06-28
dc.description.abstractReal-world videos of human activities exhibit temporal structure at various scales, long videos are typically composed out of multiple action instances, where each instance is itself composed of sub-actions with variable durations and orderings. Temporal grammars can presumably model such hierarchical structure, but are computationally difficult to apply for long video streams. We describe simple grammars that capture hierarchical temporal structure while admitting inference with a finite-state-machine. This makes parsing linear time, constant storage, and naturally online. We train grammar parameters using a latent structural SVM, where latent subactions are learned automatically. We illustrate the effectiveness of our approach over common baselines on a new half-million frame dataset of continuous YouTube videos.en_US
dc.description.sponsorshipFunding for this research was provided by NSF Grant 0954083, ONR-MURI Grant N00014- 10-1-0933, and the Intel Science and Technology Center -Visual Computing.en_US
dc.description.urihttps://ieeexplore.ieee.org/document/6909479en_US
dc.format.extent8 pagesen_US
dc.genreconference papers and proceedings preprintsen_US
dc.identifierdoi:10.13016/m2b0nz-gddn
dc.identifier.citationHamed Pirsiavash, Deva Ramanan , Parsing videos of actions with segmental grammars, 2014 IEEE Conference on Computer Vision and Pattern Recognition, DOI: 10.1109/CVPR.2014.85en_US
dc.identifier.urihttps://doi.org/10.1109/CVPR.2014.85
dc.identifier.urihttp://hdl.handle.net/11603/14318
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.rights© 2014 IEEE
dc.subjectGrammaren_US
dc.subjectVideosen_US
dc.subjectHidden Markov modelsen_US
dc.subjectData modelsen_US
dc.subjectPressesen_US
dc.subjectMarkov processesen_US
dc.subjectfinite state machinesen_US
dc.subjectsupport vector machinesen_US
dc.subjectimage segmentationen_US
dc.subjectlatent subactionsen_US
dc.subjectlatent structural SVMen_US
dc.titleParsing videos of actions with segmental grammarsen_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
grammar_cvpr14.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: