LISA Pathfinder platform stability and drag-free performance

dc.contributor.authorLISA Pathfinder Collaboration
dc.contributor.authorArmano, M.
dc.contributor.authorAudley, H.
dc.contributor.authorBaird, J.
dc.contributor.authorBinetruy, P.
dc.contributor.authorBorn, M.
dc.contributor.authorBortoluzzi, D.
dc.contributor.authorCastelli, Eleonora
dc.contributor.authorCavalleri, A.
dc.contributor.authorCesarini, A.
dc.contributor.authorCruise, A. M.
dc.contributor.authorDanzmann, K.
dc.contributor.authorde Deus Silva, M.
dc.contributor.authorDiepholz, I.
dc.contributor.authorDixon, G.
dc.contributor.authorDolesi, R.
dc.contributor.authorFerraioli, L.
dc.contributor.authorFerroni, V.
dc.contributor.authorFitzsimons, E. D.
dc.contributor.authorFreschi, M.
dc.contributor.authorGesa, L.
dc.contributor.authorGibert, F.
dc.contributor.authorGiardini, D.
dc.contributor.authorGiusteri, R.
dc.contributor.authorGrimani, C.
dc.contributor.authorGrzymisch, J.
dc.contributor.authorHarrison, I.
dc.contributor.authorHeinzel, G.
dc.contributor.authorHewitson, M.
dc.contributor.authorHollington, D.
dc.contributor.authorHoyland, D.
dc.contributor.authorHueller, M.
dc.contributor.authorInchauspé, H.
dc.contributor.authorJennrich, O.
dc.contributor.authorJetzer, P.
dc.contributor.authorKarnesis, N.
dc.contributor.authorKaune, B.
dc.contributor.authorKorsakova, N.
dc.contributor.authorKillow, C. J.
dc.contributor.authorLobo, J. A.
dc.contributor.authorLloro, I.
dc.contributor.authorLiu, L.
dc.contributor.authorLópez-Zaragoza, J. P.
dc.contributor.authorMaarschalkerweerd, R.
dc.contributor.authorMance, D.
dc.contributor.authorMeshksar, N.
dc.contributor.authorMartín, V.
dc.contributor.authorMartin-Polo, L.
dc.contributor.authorMartino, J.
dc.contributor.authorMartin-Porqueras, F.
dc.contributor.authorMateos, I.
dc.contributor.authorMcNamara, P. W.
dc.contributor.authorMendes, J.
dc.contributor.authorMendes, L.
dc.contributor.authorNofrarias, M.
dc.contributor.authorPaczkowski, S.
dc.contributor.authorPerreur-Lloyd, M.
dc.contributor.authorPetiteau, A.
dc.contributor.authorPivato, P.
dc.contributor.authorPlagnol, E.
dc.contributor.authorRamos-Castro, J.
dc.contributor.authorReiche, J.
dc.contributor.authorRobertson, D. I.
dc.contributor.authorRivas, F.
dc.contributor.authorRussano, G.
dc.contributor.authorSlutsky, J.
dc.contributor.authorSopuerta, C. F.
dc.contributor.authorSumner, T.
dc.contributor.authorTexier, D.
dc.contributor.authorThorpe, J. I.
dc.contributor.authorVetrugno, D.
dc.contributor.authorVitale, S.
dc.contributor.authorWanner, G.
dc.contributor.authorWard, H.
dc.contributor.authorWass, P. J.
dc.contributor.authorWeber, W. J.
dc.contributor.authorWissel, L.
dc.contributor.authorWittchen, A.
dc.contributor.authorZweifel, P.
dc.date.accessioned2025-08-13T20:14:14Z
dc.date.issued2019-04-16
dc.description.abstractThe science operations of the LISA Pathfinder mission have demonstrated the feasibility of sub-femto-g free fall of macroscopic test masses necessary to build a gravitational wave observatory in space such as LISA. While the main focus of interest, i.e., the optical axis or the 𝑥-axis, has been extensively studied, it is also of great importance to evaluate the stability of the spacecraft with respect to all the other degrees of freedom (d.o.f.). The current paper is dedicated to such a study: the exhaustive and quantitative evaluation of the imperfections and dynamical effects that impact the stability with respect to its local geodesic. A model of the complete closed-loop system provides a comprehensive understanding of each component of the in-loop coordinates spectral density. As will be presented, this model gives very good agreement with LISA Pathfinder flight data. It allows one to identify the noise source at the origin and the physical phenomena underlying the couplings. From this, the stability performance of the spacecraft with respect to its geodesic is extracted as a function of frequency. Close to 1 mHz, the stability of the spacecraft on the Xₛ*, Yₛ* and Zₛ* d.o.f. is shown to be of the order of 5.0 × 10⁻¹⁵ m s⁻² Hz⁻¹/² for X, 6.0 × 10⁻¹⁴ m s⁻² Hz⁻¹/² for Y, and 4.0 × 10⁻¹⁴ m s⁻² Hz⁻¹/² for Z. For the angular d.o.f., the values are of the order of 3×10⁻¹² rad s⁻² Hz⁻¹/² for Θₛ*, 5×10⁻¹³ rads⁻² Hz⁻¹/² for Hₛ*, and 3×10⁻¹³ rad s⁻² Hz⁻¹/² for Φₛ*. Below 1 mHz, however, the stability performances are worsened significantly by the effect of the star tracker noise on the closed-loop system. It is worth noting that LISA is expected to be spared from such concerns, as differential wave-front sensing, an attitude sensor system of much higher precision, will be utilized for attitude control *= subscript c
dc.description.sponsorshipThis work has been made possible by the LISA Pathfinder mission, which is part of the space-science program of the European Space Agency. The French contribution has been supported by the CNES (Accord sp´ecifique de projet CNES 1316634/CNRS 103747), the CNRS, the Observatoire de Paris and the University Paris-Diderot. E. P. and H. I. would also like to acknowledge the financial support of the UnivEarthS Labex program at Sorbonne Paris Cit´e (Grants No. ANR-10-LABX-0023 and No. ANR-11-IDEX-0005-02). The Albert-Einstein-Institut acknowledges the support of the German Space Agency, DLR. The work is supported by the Federal Ministry for Economic Affairs and Energy based on a resolution of the German Bundestag (Grants No. FKZ 50OQ0501 and No. FKZ 50OQ1601). The Italian contribution has been supported by Agenzia Spaziale Italiana and Istituto Nazionale di Fisica Nucleare. The Spanish contribution has been supported by Contracts No. AYA2010-15709 (MICINN), No. ESP2013-47637-P, and No. ESP2015- 67234-P (MINECO). M. N. acknowledges support from Fundacion General CSIC (Programa ComFuturo). F. R. acknowledges a FPI contract (MINECO). The Swiss contribution acknowledges the support of the Swiss Space Office (SSO) via the PRODEX Programme of ESA. L. F. is supported by the Swiss National Science Foundation. The U.K. groups wish to acknowledge support from the United Kingdom Space Agency (UKSA), the University of Glasgow, the University of Birmingham, Imperial College, and the Scottish Universities Physics Alliance (SUPA). J. I. T. and J. S. acknowledge the support of the U.S. National Aeronautics and Space Administration (NASA).
dc.description.urihttps://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.082001
dc.format.extent14 pages
dc.genrejournal articles
dc.identifierdoi:10.13016/m2etyp-mj0h
dc.identifier.citationLISA Pathfinder Collaboration, M. Armano, H. Audley, J. Slutsky, J. I. Thorpe, E. Castelli, et al. “LISA Pathfinder Platform Stability and Drag-Free Performance.” Physical Review D 99, no. 8 (2019): 082001. https://doi.org/10.1103/PhysRevD.99.082001.
dc.identifier.urihttps://doi.org/10.1103/PhysRevD.99.082001
dc.identifier.urihttp://hdl.handle.net/11603/39720
dc.language.isoen
dc.publisherAPS
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Center for Space Sciences and Technology (CSST) / Center for Research and Exploration in Space Sciences & Technology II (CRSST II)
dc.rightsThis work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
dc.rightsPublic Domain
dc.rights.urihttps://creativecommons.org/publicdomain/mark/1.0/
dc.titleLISA Pathfinder platform stability and drag-free performance
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0002-4429-0682

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevD99082001.pdf
Size:
3.69 MB
Format:
Adobe Portable Document Format