The Optimal Relaxation Parameter for the SOR Method Applied to the Poisson Equation in Any Space Dimensions

dc.contributor.authorYang, Shiming
dc.contributor.authorGobbert, Matthias K.
dc.date.accessioned2018-10-26T13:43:38Z
dc.date.available2018-10-26T13:43:38Z
dc.date.issued2009-03-24
dc.description.abstractThe finite difference discretization of the Poisson equation with Dirichlet boundary conditions leads to a large, sparse system of linear equations for the solution values at the interior mesh points. This problem is a popular and useful model problem for performance comparisons of iterative methods for the solution of linear systems. To use the successive overrelaxation (SOR) method in these comparisons, a formula for the optimal value of its relaxation parameter is needed. In standard texts, this value is only available for the case of two space dimensions, even though the model problem is also instructive in higher dimensions. This note extends the derivation of the optimal relaxation parameter to any space dimension and confirms its validity by means of test calculations in three dimensions.en_US
dc.description.urihttps://www.sciencedirect.com/science/article/pii/S0893965908001523en_US
dc.format.extent7 pagesen_US
dc.genrejournal article pre-printen_US
dc.identifierdoi:10.13016/M2D795F5H
dc.identifier.citationShiming Yang, Matthias K. Gobbert, The Optimal Relaxation Parameter for the SOR Method Applied to the Poisson Equation in Any Space Dimensions, Applied Mathematics Letters, Volume 22, Issue 3, March 2009, Pages 325-331 ,https://doi.org/10.1016/j.aml.2008.03.028en_US
dc.identifier.urihttps://doi.org/10.1016/j.aml.2008.03.028
dc.identifier.urihttp://hdl.handle.net/11603/11742
dc.language.isoen_USen_US
dc.publisherElsevier Ltden_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mathematics Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.subjectSOR methoden_US
dc.subjectOptimal relaxation parameteren_US
dc.subjectSparse linear systemsen_US
dc.subjectPoisson equationen_US
dc.subjectFinite difference methoden_US
dc.subjectUMBC High Performance Computing Facility (HPCF)en_US
dc.titleThe Optimal Relaxation Parameter for the SOR Method Applied to the Poisson Equation in Any Space Dimensionsen_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
YangGobbertAML2007.pdf
Size:
526.04 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: