The Optimal Relaxation Parameter for the SOR Method Applied to the Poisson Equation in Any Space Dimensions
dc.contributor.author | Yang, Shiming | |
dc.contributor.author | Gobbert, Matthias K. | |
dc.date.accessioned | 2018-10-26T13:43:38Z | |
dc.date.available | 2018-10-26T13:43:38Z | |
dc.date.issued | 2009-03-24 | |
dc.description.abstract | The finite difference discretization of the Poisson equation with Dirichlet boundary conditions leads to a large, sparse system of linear equations for the solution values at the interior mesh points. This problem is a popular and useful model problem for performance comparisons of iterative methods for the solution of linear systems. To use the successive overrelaxation (SOR) method in these comparisons, a formula for the optimal value of its relaxation parameter is needed. In standard texts, this value is only available for the case of two space dimensions, even though the model problem is also instructive in higher dimensions. This note extends the derivation of the optimal relaxation parameter to any space dimension and confirms its validity by means of test calculations in three dimensions. | en_US |
dc.description.uri | https://www.sciencedirect.com/science/article/pii/S0893965908001523 | en_US |
dc.format.extent | 7 pages | en_US |
dc.genre | journal article pre-print | en_US |
dc.identifier | doi:10.13016/M2D795F5H | |
dc.identifier.citation | Shiming Yang, Matthias K. Gobbert, The Optimal Relaxation Parameter for the SOR Method Applied to the Poisson Equation in Any Space Dimensions, Applied Mathematics Letters, Volume 22, Issue 3, March 2009, Pages 325-331 ,https://doi.org/10.1016/j.aml.2008.03.028 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.aml.2008.03.028 | |
dc.identifier.uri | http://hdl.handle.net/11603/11742 | |
dc.language.iso | en_US | en_US |
dc.publisher | Elsevier Ltd | en_US |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC Mathematics Department Collection | |
dc.relation.ispartof | UMBC Faculty Collection | |
dc.rights | This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author. | |
dc.subject | SOR method | en_US |
dc.subject | Optimal relaxation parameter | en_US |
dc.subject | Sparse linear systems | en_US |
dc.subject | Poisson equation | en_US |
dc.subject | Finite difference method | en_US |
dc.subject | UMBC High Performance Computing Facility (HPCF) | en_US |
dc.title | The Optimal Relaxation Parameter for the SOR Method Applied to the Poisson Equation in Any Space Dimensions | en_US |
dc.type | Text | en_US |