UMBC_EBIQUITY-CORE: Semantic Textual Similarity Systems

dc.contributor.authorHan, Lushan
dc.contributor.authorKashyap, Abhay L.
dc.contributor.authorFinin, Tim
dc.contributor.authorMayfield, James
dc.contributor.authorWeese, Johnathan
dc.date.accessioned2018-11-05T14:17:26Z
dc.date.available2018-11-05T14:17:26Z
dc.date.issued2013-06-13
dc.descriptionProceedings of the Second Joint Conference on Lexical and Computational Semanticsen_US
dc.description.abstractWe describe three semantic text similarity systems developed for the *SEM 2013 STS shared task and the results of the corresponding three runs. All of them used a word similarity feature that combined LSA word similarity and WordNet knowledge. The first run, which achieved the top mean score on the task of all the submissions, used a simple term alignment algorithm. The other two runs, ranked second and fourth, used SVM models to combine a larger sets of features.en_US
dc.description.sponsorshipThis research was supported by AFOSR award FA9550-08-1-0265 and a gift from Microsoft.en_US
dc.description.urihttps://ebiquity.umbc.edu/paper/html/id/621/UMBC_EBIQUITY-CORE-Semantic-Textual-Similarity-Systemsen_US
dc.format.extent9 pagesen_US
dc.genreconference papers and proceedings pre-printen_US
dc.identifierdoi:10.13016/M28W38626
dc.identifier.citationLushan Han, Abhay L. Kashyap, Tim Finin, James Mayfield, and Johnathan Weese, UMBC_EBIQUITY-CORE: Semantic Textual Similarity Systems, Proceedings of the Second Joint Conference on Lexical and Computational Semantics, 2013.en_US
dc.identifier.urihttp://hdl.handle.net/11603/11852
dc.language.isoen_USen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.subjectlanguageen_US
dc.subjectnatural language processingen_US
dc.subjectsemanticsen_US
dc.subjectUMBC Ebiquity Research Groupen_US
dc.titleUMBC_EBIQUITY-CORE: Semantic Textual Similarity Systemsen_US
dc.typeTexten_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: