A two stage k-monotone B-spline regression estimator: Uniform Lipschitz property and optimal convergence rate

dc.contributor.authorLebair, Teresa M.
dc.contributor.authorShen, Jinglai
dc.date.accessioned2024-08-27T20:37:35Z
dc.date.available2024-08-27T20:37:35Z
dc.date.issued2018-01
dc.description.abstractThis paper considers k-monotone estimation and the related asymptotic performance analysis over a suitable Hölder class for general k. A novel two-stage k-monotone B-spline estimator is proposed: in the first stage, an unconstrained estimator with optimal asymptotic performance is considered; in the second stage, a k-monotone B-spline estimator is constructed (roughly) by projecting the unconstrained estimator onto a cone of k-monotone splines. To study the asymptotic performance of the second-stage estimator under the sup-norm and other risks, a critical uniform Lipschitz property for the k-monotone B-spline estimator is established under the ℓ∞-norm. This property uniformly bounds the Lipschitz constants associated with the mapping from a (weighted) first-stage input vector to the B-spline coefficients of the second-stage k-monotone estimator, independent of the sample size and the number of knots. This result is then exploited to analyze the second-stage estimator performance and develop convergence rates under the sup-norm, pointwise, and Lp-norm (with p∈[1,∞)) risks. By employing recent results in k-monotone estimation minimax lower bound theory, we show that these convergence rates are optimal.
dc.description.sponsorshipSupported in part by the NSF grants CMMI-1030804 and DMS-1042916.
dc.description.urihttps://projecteuclid.org/journals/electronic-journal-of-statistics/volume-12/issue-1/A-two-stage-k-monotone-B-spline-regression-estimator/10.1214/18-EJS1426.full
dc.format.extent41 pages
dc.genrejournal articles
dc.identifierdoi:10.13016/m2gt4i-upo4
dc.identifier.citationLebair, Teresa M., and Jinglai Shen. “A Two Stage K-Monotone B-Spline Regression Estimator: Uniform Lipschitz Property and Optimal Convergence Rate.” Electronic Journal of Statistics 12, no. 1 (January 2018): 1388–1428. https://doi.org/10.1214/18-EJS1426.
dc.identifier.urihttps://doi.org/10.1214/18-EJS1426
dc.identifier.urihttp://hdl.handle.net/11603/35753
dc.language.isoen_US
dc.publisherDuke University Press
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Mathematics and Statistics Department
dc.rightsCC BY 4.0 Deed Attribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectk-monotone estimation
dc.subject62G08
dc.subject62G20
dc.subjectasymptotic analysis
dc.subjectB-splines
dc.subjectConvergence rates
dc.subjectNonparametric regression
dc.subjectshape constraints
dc.titleA two stage k-monotone B-spline regression estimator: Uniform Lipschitz property and optimal convergence rate
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0003-2172-4182

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
18EJS1426.pdf
Size:
616.51 KB
Format:
Adobe Portable Document Format