Variational integrators for mechanical systems with configuration dependent inertia

dc.contributor.authorAmit, Sanyal
dc.contributor.authorShen, Jinglai
dc.contributor.authorMcclamroch, N.H.
dc.date.accessioned2024-08-27T20:37:45Z
dc.date.available2024-08-27T20:37:45Z
dc.date.issued2005-03-17
dc.description.abstractThis paper develops discrete Euler-Lagrange equations for finite-dimensional, conservative, mechanical systems with configuration-dependent inertia. The configuration dependence of the inertia makes the Hamiltonian of such a system non-separable. We apply a discrete version of Routh reduction when there is a cyclic generalized coordinate, reflecting a symmetry. These discrete Euler-Lagrange and reduced Lagrange-Routh equations provide variational integration algorithms with good long-term numerical properties. They conserve the conjugate momentum corresponding to the cyclic coordinate, and error in the computed total energy remains bounded. These properties are illustrated through simulations of the free planar dynamics of an elastic dumbbell body in an inverse square central gravity field.
dc.description.sponsorshipThis research has been supported in part by NSF under grants ECS-0140053 and ECS-0244977.
dc.format.extent35 pages
dc.genretechnical reports
dc.identifierdoi:10.13016/m2sxub-whhh
dc.identifier.urihttp://hdl.handle.net/11603/35766
dc.language.isoen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mathematics and Statistics Department
dc.titleVariational integrators for mechanical systems with configuration dependent inertia
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0003-2172-4182

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dELmech_pap.pdf
Size:
2.51 MB
Format:
Adobe Portable Document Format