Don't torque like that. Measuring compact object magnetic fields with analytic torque models
Loading...
Links to Files
Author/Creator ORCID
Date
2025-04-11
Type of Work
Department
Program
Citation of Original Publication
Rights
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Abstract
Context. Changes of the rotational period observed in various magnetized accreting sources are generally attributed to the interaction between the in-falling plasma and the large-scale magnetic field of the accretor. A number of models have been proposed to link these changes to the mass accretion rate, based on different assumptions on the relevant physical processes and system parameters. For X-ray binaries with neutron stars, with the help of precise measurements of the spin periods provided by current instrumentation, these models render a way to infer such parameters as the strength of the dipolar field and a distance to the system. Often, the obtained magnetic field strength values contradict those from other methods used to obtain magnetic field estimates. Aims. We want to compare the results of several of the proposed accretion models. To this end an example application of these models to data is performed. Methods. We reformulate the set of disk accretion torque models in a way that their parametrization are directly comparable. The application of the reformulated models is discussed and demonstrated using Fermi/GBM and Swift/BAT monitoring data covering several X-ray outbursts of the accreting pulsar 4U 0115+63. Results. We find that most of the models under consideration are able to describe the observations to a high degree of accuracy and with little indication for one model being preferred over the others. Yet, derived parameters from those models show a large spread. Specifically the magnetic field strength ranges over one order of magnitude for the different models. This indicates that the results are heavily influenced by systematic uncertainties.