A GEO-GEO Stereo Observation of Diurnal Cloud Variations over the Eastern Pacific

dc.contributor.authorWu, Dong L.
dc.contributor.authorCarr, James L.
dc.contributor.authorFriberg, Mariel D.
dc.contributor.authorSummers, Tyler C.
dc.contributor.authorLee, Jae N.
dc.contributor.authorHorváth, Ákos
dc.date.accessioned2024-04-10T19:05:40Z
dc.date.available2024-04-10T19:05:40Z
dc.date.issued2024-03-24
dc.description.abstractFast atmospheric processes such as deep convection and severe storms are challenging to observe and understand without adequate spatiotemporal sampling. Geostationary (GEO) imaging has the advantage of tracking these fast processes continuously at a cadence of the 10 min global and 1 min mesoscale from thermal infrared (TIR) channels. More importantly, the newly-available GEO-GEO stereo observations from our 3D-Wind algorithm provide more accurate height assignment for atmospheric motion vectors (AMVs) than those from conventional TIR methods. Unlike the radiometric methods, the stereo height is insensitive to radiometric TIR calibration of satellite sensors and can assign the feature height correctly under complex situation (e.g., multi-layer clouds and atmospheric inversion). This paper shows a case study from continuous GEO-GEO stereo observations over the Eastern Pacific during 1–5 February 2023, to highlight diurnal variations of clouds and dynamics in the planetary boundary layer (PBL), altocumulus/congestus, convective outflow and tropical tropopause layer (TTL). Because of their good vertical resolution, the stereo observations often show a wind shear in these cloud layers. As an example, the stereo winds reveal the classic Ekman spiral in marine PBL dynamics with a clockwise (counterclockwise) wind direction change with height in the Northern (Southern) Hemisphere subtropics. Over the Southeastern Pacific, the stereo cloud observations show a clear diurnal variation in the closed-to-open cell transition in the PBL and evidence of precipitation at a lower level from broken stratocumulus clouds.
dc.description.sponsorshipThis research was funded by NASA Terra Project (WBS 921266.04.12.01.72), High-End Computing (HEC) Program, and Sun-Climate Research (WBS 509496.02.03.01.17.04).
dc.description.urihttps://www.mdpi.com/2072-4292/16/7/1133
dc.format.extent15 pages
dc.genrejournal articles
dc.identifierdoi:10.13016/m2z6gk-upwq
dc.identifier.citationWu, Dong L., James L. Carr, Mariel D. Friberg, Tyler C. Summers, Jae N. Lee, and Ákos Horváth. “A GEO-GEO Stereo Observation of Diurnal Cloud Variations over the Eastern Pacific.” Remote Sensing 16, no. 7 (January 2024): 1133. https://doi.org/10.3390/rs16071133.
dc.identifier.urihttps://doi.org/10.3390/rs16071133
dc.identifier.urihttp://hdl.handle.net/11603/32977
dc.language.isoen_US
dc.publisherMDPI
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC GESTAR II
dc.rightsThis work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
dc.rightsPublic Domain
dc.rights.urihttps://creativecommons.org/publicdomain/mark/1.0/deed.en
dc.subjectatmospheric motion vector
dc.subjectclouds
dc.subjectcongestus
dc.subjectdiurnal cycle
dc.subjectEkman spiral
dc.subjectheight assignment
dc.subjectplanetary boundary layer
dc.subjectstereo height
dc.subjectwind shear
dc.titleA GEO-GEO Stereo Observation of Diurnal Cloud Variations over the Eastern Pacific
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0001-9814-9855

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
remotesensing_16_01133.pdf
Size:
8.25 MB
Format:
Adobe Portable Document Format