A GEO-GEO Stereo Observation of Diurnal Cloud Variations over the Eastern Pacific
dc.contributor.author | Wu, Dong L. | |
dc.contributor.author | Carr, James L. | |
dc.contributor.author | Friberg, Mariel D. | |
dc.contributor.author | Summers, Tyler C. | |
dc.contributor.author | Lee, Jae N. | |
dc.contributor.author | Horváth, Ákos | |
dc.date.accessioned | 2024-04-10T19:05:40Z | |
dc.date.available | 2024-04-10T19:05:40Z | |
dc.date.issued | 2024-03-24 | |
dc.description.abstract | Fast atmospheric processes such as deep convection and severe storms are challenging to observe and understand without adequate spatiotemporal sampling. Geostationary (GEO) imaging has the advantage of tracking these fast processes continuously at a cadence of the 10 min global and 1 min mesoscale from thermal infrared (TIR) channels. More importantly, the newly-available GEO-GEO stereo observations from our 3D-Wind algorithm provide more accurate height assignment for atmospheric motion vectors (AMVs) than those from conventional TIR methods. Unlike the radiometric methods, the stereo height is insensitive to radiometric TIR calibration of satellite sensors and can assign the feature height correctly under complex situation (e.g., multi-layer clouds and atmospheric inversion). This paper shows a case study from continuous GEO-GEO stereo observations over the Eastern Pacific during 1–5 February 2023, to highlight diurnal variations of clouds and dynamics in the planetary boundary layer (PBL), altocumulus/congestus, convective outflow and tropical tropopause layer (TTL). Because of their good vertical resolution, the stereo observations often show a wind shear in these cloud layers. As an example, the stereo winds reveal the classic Ekman spiral in marine PBL dynamics with a clockwise (counterclockwise) wind direction change with height in the Northern (Southern) Hemisphere subtropics. Over the Southeastern Pacific, the stereo cloud observations show a clear diurnal variation in the closed-to-open cell transition in the PBL and evidence of precipitation at a lower level from broken stratocumulus clouds. | |
dc.description.sponsorship | This research was funded by NASA Terra Project (WBS 921266.04.12.01.72), High-End Computing (HEC) Program, and Sun-Climate Research (WBS 509496.02.03.01.17.04). | |
dc.description.uri | https://www.mdpi.com/2072-4292/16/7/1133 | |
dc.format.extent | 15 pages | |
dc.genre | journal articles | |
dc.identifier | doi:10.13016/m2z6gk-upwq | |
dc.identifier.citation | Wu, Dong L., James L. Carr, Mariel D. Friberg, Tyler C. Summers, Jae N. Lee, and Ákos Horváth. “A GEO-GEO Stereo Observation of Diurnal Cloud Variations over the Eastern Pacific.” Remote Sensing 16, no. 7 (January 2024): 1133. https://doi.org/10.3390/rs16071133. | |
dc.identifier.uri | https://doi.org/10.3390/rs16071133 | |
dc.identifier.uri | http://hdl.handle.net/11603/32977 | |
dc.language.iso | en_US | |
dc.publisher | MDPI | |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC Faculty Collection | |
dc.relation.ispartof | UMBC GESTAR II | |
dc.rights | This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law. | |
dc.rights | Public Domain | |
dc.rights.uri | https://creativecommons.org/publicdomain/mark/1.0/deed.en | |
dc.subject | atmospheric motion vector | |
dc.subject | clouds | |
dc.subject | congestus | |
dc.subject | diurnal cycle | |
dc.subject | Ekman spiral | |
dc.subject | height assignment | |
dc.subject | planetary boundary layer | |
dc.subject | stereo height | |
dc.subject | wind shear | |
dc.title | A GEO-GEO Stereo Observation of Diurnal Cloud Variations over the Eastern Pacific | |
dc.type | Text | |
dcterms.creator | https://orcid.org/0000-0001-9814-9855 |
Files
Original bundle
1 - 1 of 1