Image Segmentation for Dust Detection Using Semi-supervised Machine Learning

Date

2021-03-19

Department

Program

Citation of Original Publication

M. Yu, J. Bessac, L. Xu, A. Gangopadhyay, Y. Shi and J. Wang, "Image Segmentation for Dust Detection Using Semi-supervised Machine Learning," 2020 IEEE International Conference on Big Data (Big Data), 2020, pp. 1745-1754, doi: 10.1109/BigData50022.2020.9378198.

Rights

This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain Mark 1.0

Abstract

Dust plumes originating from the Earth’s major arid and semi-arid areas can significantly affect the climate system and human health. Many existing methods have been developed to identify dust from non-dust pixels from a remote sensing point of view. However, these methods use empirical rules and therefore have difficulty detecting dust above or below the detectable thresholds. Supervised machine learning methods have also been applied to detect dust from satellite imagery, but these methods are limited especially when applying to areas outside the training data due to the inadequate amount of ground truth data. In this work, we proposed an automatic dust segmentation framework using semi-supervised machine learning, based on a collocated dataset using Visible Infrared Imaging Radiometer Suite (VIIRS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). The proposed method utilizes unsupervised machine learning for segmentation of VIIRS imagery, and leverages the guidance from the dust labels using the dust profile product of CALIPSO to determine the dust clusters as the final product. The dust clusters are determined based on the similarity of spectral signature from dust pixels along the CALIPSO tracks. Experiment results show that the accuracy of the proposed framework outperforms the traditional physical infrared method along CALIPSO tracks. In addition, the proposed method performs consistently over three different study areas, the North Atlantic Ocean, East Asia, and Northern Africa.