The Convective Transport of Active Species in the Tropics (CONTRAST) Experiment

dc.contributor.authorWolfe, G.
dc.contributor.authoret al.
dc.date.accessioned2020-09-17T17:13:04Z
dc.date.available2020-09-17T17:13:04Z
dc.date.issued2017-01-23
dc.descriptionL. L. Pan; E. L. Atlas; R. J. Salawitch; S. B. Honomichl; J. F. Bresch; W. J. Randel; E. C. Apel; R. S. Hornbrook; A. J. Weinheimer; D. C. Anderson S. J. Andrews; S. Baidar; S. P. Beaton; T. L. Campos; L. J. Carpenter; D. Chen; B. Dix; V. Donets; S. R. Hall; T. F. Hanisco; C. R. Homeyer; L. G. Huey; J. B. Jensen; L. Kaser; D. E. Kinnison; T. K. Koenig; J.-F. Lamarque; C. Liu; J. Luo; Z. J. Luo; D. D. Montzka; J. M. Nicely; R. B. Pierce; D. D. Riemer; T. Robinson; P. Romashkin; A. Saiz-Lopez; S. Schauffler; O. Shieh; M. H. Stell; K. Ullmann; G. Vaughan; R. Volkamer; G. Wolfe
dc.description.abstractThe Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5°N, 144.8°E) during January–February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15-km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry–climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High-accuracy, in situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the upper troposphere, where previous observations from balloonborne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January–February 2014. Together, CONTRAST, Airborne Tropical Tropopause Experiment (ATTREX), and Coordinated Airborne Studies in the Tropics (CAST), using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.en_US
dc.description.sponsorshipFunding for this work was provided by the National Science Foundation (NSF) via its sponsorship of the National Center for Atmospheric Research (NCAR). The CONTRAST experiment was sponsored by the (NSF). We acknowledge the excellent field project support provided by NCAR/EOL during flight operations. We give special thanks to the GV pilots and mission coordinators for their knowledge, skills, and dedication; these were essential to the success of this campaign. The MACC forecasts were funded by the European Union’s Seventh Framework Programme (FP7) under Grant Agreement 283576. The views, opinions, and findings contained in this report are those of the author(s) and should not be construed as an official National Oceanic and Atmospheric Administration or U.S. government position, policy, or decision.en_US
dc.description.urihttps://journals.ametsoc.org/bams/article/98/1/106/69596en_US
dc.format.extent23 pagesen_US
dc.genrejournal articlesen_US
dc.identifierdoi:10.13016/m2dzh8-viuw
dc.identifier.citationL. L. Pan et al., The Convective Transport of Active Species in the Tropics (CONTRAST) Experiment, Bull. Amer. Meteor. Soc. (2017) 98 (1): 106–128,doi: https://doi.org/10.1175/BAMS-D-14-00272.1en_US
dc.identifier.urihttps://doi.org/10.1175/BAMS-D-14-00272.1
dc.identifier.urihttp://hdl.handle.net/11603/19676
dc.language.isoen_USen_US
dc.publisherAmerican Meteorological Society (AMS)en_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Joint Center for Earth Systems Technology
dc.relation.ispartofUMBC Physics Department
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.rightsPublic Domain Mark 1.0*
dc.rightsThis work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
dc.rights.urihttp://creativecommons.org/publicdomain/mark/1.0/*
dc.titleThe Convective Transport of Active Species in the Tropics (CONTRAST) Experimenten_US
dc.typeTexten_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bams-d-14-00272_1.pdf
Size:
24.64 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: