Knowledge graph fact prediction via knowledge-enriched tensor factorization
dc.contributor.author | Padia, Ankur | |
dc.contributor.author | Kalpakis, Konstantinos | |
dc.contributor.author | Ferraro, Francis | |
dc.contributor.author | Finin, Tim | |
dc.date.accessioned | 2020-07-22T16:58:01Z | |
dc.date.available | 2020-07-22T16:58:01Z | |
dc.date.issued | 2019-02-15 | |
dc.description.abstract | We present a family of novel methods for embedding knowledge graphs into real-valued tensors. These tensor-based embeddings capture the ordered relations that are typical in the knowledge graphs represented by semantic web languages like RDF. Unlike many previous models, our methods can easily use prior background knowledge provided by users or extracted automatically from existing knowledge graphs. In addition to providing more robust methods for knowledge graph embedding, we provide a provably-convergent, linear tensor factorization algorithm. We demonstrate the efficacy of our models for the task of predicting new facts across eight different knowledge graphs, achieving between 5% and 50% relative improvement over existing state-of-the-art knowledge graph embedding techniques. Our empirical evaluation shows that all of the tensor decomposition models perform well when the average degree of an entity in a graph is high, with constraint-based models doing better on graphs with a small number of highly similar relations and regularization-based models dominating for graphs with relations of varying degrees of similarity. | en_US |
dc.description.sponsorship | Partial support for this research was provided by gifts from IBM through the IBM AI Horizons Network and from Northop Grumman Corporation. | en_US |
dc.description.uri | https://www.sciencedirect.com/science/article/abs/pii/S1570826819300046 | en_US |
dc.format.extent | 29 pages | en_US |
dc.genre | journal articles preprints | en_US |
dc.identifier | doi:10.13016/m2wetc-aknl | |
dc.identifier.citation | Ankur Padia, Konstantinos Kalpakis, Francis Ferraro and Tim Finin, Knowledge graph fact prediction via knowledge-enriched tensor factorization, Journal of Web Semantics Volume 59,100497(2019), https://doi.org/10.1016/j.websem.2019.01.004 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.websem.2019.01.004 | |
dc.identifier.uri | http://hdl.handle.net/11603/19218 | |
dc.language.iso | en_US | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC Computer Science and Electrical Engineering Department Collection | |
dc.relation.ispartof | UMBC Faculty Collection | |
dc.rights | This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author. | |
dc.rights | © 2019 Elsevier B.V. All rights reserved. | |
dc.subject | UMBC Ebiquity Research Group | |
dc.title | Knowledge graph fact prediction via knowledge-enriched tensor factorization | en_US |
dc.type | Text | en_US |