On Sierpiński and Riesel Repdigits and Repintegers
dc.contributor.author | Bispels, Chris | |
dc.contributor.author | Cohen, Matthew | |
dc.contributor.author | Harrington, Joshua | |
dc.contributor.author | Pontes, Kaelyn | |
dc.contributor.author | Schaumann, Leif | |
dc.contributor.author | Wong, Tony W. H. | |
dc.date.accessioned | 2025-06-17T14:46:55Z | |
dc.date.available | 2025-06-17T14:46:55Z | |
dc.date.issued | 2025-05-01 | |
dc.description.abstract | For positive integers b≥2 , k<b, and t we say that an integer k₆⁽ᵗ⁾ is a b-repdigit if k₆⁽ᵗ⁾ can be expressed as the digit k repeated t times in base-b representation, i.e., k₆⁽ᵗ⁾ =k(bᵗ-1)/(b-1). In the case of k=1, we say that 1₆⁽ᵗ⁾ is a b-repunit. In this article, we investigate the existsence of b-repdigits and b-repunits among the sets of Sierpiński numbers and Riesel numbers. A Sierpiński number is defined as an odd integer k for which k⋅2ⁿ+1 is composite for all positive integers $n$ and Riesel numbers are similarly defined for the expression k⋅2ⁿ-1. | |
dc.description.uri | http://arxiv.org/abs/2505.00778 | |
dc.format.extent | 12 pages | |
dc.genre | journal articles | |
dc.genre | preprints | |
dc.identifier | doi:10.13016/m2lsc6-h4av | |
dc.identifier.uri | https://doi.org/10.48550/arXiv.2505.00778 | |
dc.identifier.uri | http://hdl.handle.net/11603/39094 | |
dc.language.iso | en_US | |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC Mathematics and Statistics Department | |
dc.relation.ispartof | UMBC Student Collection | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Mathematics - Number Theory | |
dc.title | On Sierpiński and Riesel Repdigits and Repintegers | |
dc.type | Text | |
dcterms.creator | https://orcid.org/0009-0009-3851-8175 |
Files
Original bundle
1 - 1 of 1