On Sierpiński and Riesel Repdigits and Repintegers

dc.contributor.authorBispels, Chris
dc.contributor.authorCohen, Matthew
dc.contributor.authorHarrington, Joshua
dc.contributor.authorPontes, Kaelyn
dc.contributor.authorSchaumann, Leif
dc.contributor.authorWong, Tony W. H.
dc.date.accessioned2025-06-17T14:46:55Z
dc.date.available2025-06-17T14:46:55Z
dc.date.issued2025-05-01
dc.description.abstractFor positive integers b≥2 , k<b, and t we say that an integer k₆⁽ᵗ⁾ is a b-repdigit if k₆⁽ᵗ⁾ can be expressed as the digit k repeated t times in base-b representation, i.e., k₆⁽ᵗ⁾ =k(bᵗ-1)/(b-1). In the case of k=1, we say that 1₆⁽ᵗ⁾ is a b-repunit. In this article, we investigate the existsence of b-repdigits and b-repunits among the sets of Sierpiński numbers and Riesel numbers. A Sierpiński number is defined as an odd integer k for which k⋅2ⁿ+1 is composite for all positive integers $n$ and Riesel numbers are similarly defined for the expression k⋅2ⁿ-1.
dc.description.urihttp://arxiv.org/abs/2505.00778
dc.format.extent12 pages
dc.genrejournal articles
dc.genrepreprints
dc.identifierdoi:10.13016/m2lsc6-h4av
dc.identifier.urihttps://doi.org/10.48550/arXiv.2505.00778
dc.identifier.urihttp://hdl.handle.net/11603/39094
dc.language.isoen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mathematics and Statistics Department
dc.relation.ispartofUMBC Student Collection
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMathematics - Number Theory
dc.titleOn Sierpiński and Riesel Repdigits and Repintegers
dc.typeText
dcterms.creatorhttps://orcid.org/0009-0009-3851-8175

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2505.00778v1.pdf
Size:
222.72 KB
Format:
Adobe Portable Document Format