Mental Health Equity in LLMs: Leveraging Multi-Hop Question Answering to Detect Amplified and Silenced Perspectives

dc.contributor.authorHaider, Batool
dc.contributor.authorGorti, Atmika
dc.contributor.authorChadha, Aman
dc.contributor.authorGaur, Manas
dc.date.accessioned2025-07-09T17:55:06Z
dc.date.issued2025-06-22
dc.description.abstractLarge Language Models (LLMs) in mental healthcare risk propagating biases that reinforce stigma and harm marginalized groups. While previous research identified concerning trends, systematic methods for detecting intersectional biases remain limited. This work introduces a multi-hop question answering (MHQA) framework to explore LLM response biases in mental health discourse. We analyze content from the Interpretable Mental Health Instruction (IMHI) dataset across symptom presentation, coping mechanisms, and treatment approaches. Using systematic tagging across age, race, gender, and socioeconomic status, we investigate bias patterns at demographic intersections. We evaluate four LLMs: Claude 3.5 Sonnet, Jamba 1.6, Gemma 3, and Llama 4, revealing systematic disparities across sentiment, demographics, and mental health conditions. Our MHQA approach demonstrates superior detection compared to conventional methods, identifying amplification points where biases magnify through sequential reasoning. We implement two debiasing techniques: Roleplay Simulation and Explicit Bias Reduction, achieving 66-94% bias reductions through few-shot prompting with BBQ dataset examples. These findings highlight critical areas where LLMs reproduce mental healthcare biases, providing actionable insights for equitable AI development.
dc.description.urihttp://arxiv.org/abs/2506.18116
dc.format.extent19 pages
dc.genrejournal articles
dc.genrepreprints
dc.identifierdoi:10.13016/m2aati-2grr
dc.identifier.urihttps://doi.org/10.48550/arXiv.2506.18116
dc.identifier.urihttp://hdl.handle.net/11603/39264
dc.language.isoen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department
dc.relation.ispartofUMBC Faculty Collection
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectComputer Science - Artificial Intelligence
dc.subjectComputer Science - Computers and Society
dc.subjectComputer Science - Computation and Language
dc.subjectUMBC Ebiquity Research Group
dc.subjectUMBC KAI2 Knowledge Infused AI and Inference Lab
dc.titleMental Health Equity in LLMs: Leveraging Multi-Hop Question Answering to Detect Amplified and Silenced Perspectives
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0002-5411-2230

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2506.18116v1.pdf
Size:
833.72 KB
Format:
Adobe Portable Document Format