Light-absorbing black carbon and brown carbon components of smoke aerosol from DSCOVR EPIC measurements over North America and Central Africa
dc.contributor.author | Choi, Myungje | |
dc.contributor.author | Lyapustin, Alexei | |
dc.contributor.author | Schuster, Gregory L. | |
dc.contributor.author | Go, Sujung | |
dc.contributor.author | Wang, Yujie | |
dc.contributor.author | Korkin, Sergey | |
dc.contributor.author | Kahn, Ralph | |
dc.contributor.author | Reid, Jeffrey S. | |
dc.contributor.author | Hyer, Edward J. | |
dc.contributor.author | Eck, Thomas | |
dc.contributor.author | Chin, Mian | |
dc.contributor.author | Diner, David J. | |
dc.contributor.author | Kalashnikova, Olga | |
dc.contributor.author | Dubovik, Oleg | |
dc.contributor.author | Kim, Jhoon | |
dc.contributor.author | Moosmüller, Hans | |
dc.date.accessioned | 2024-08-07T14:07:49Z | |
dc.date.available | 2024-08-07T14:07:49Z | |
dc.date.issued | 2024-09-23 | |
dc.description.abstract | Wildfires and agricultural burning generate seemingly increasing smoke aerosol emissions, impacting societal and natural ecosystems. To understand smoke’s effects on climate and public health, we analyzed the spatiotemporal distribution of smoke aerosols, focusing on two major light-absorbing components, black carbon (BC) and brown carbon (BrC) aerosols. Using NASA’s Earth Polychromatic Imaging Camera (EPIC) instrument aboard the NOAA’s Deep Space Climate Observatory (DSCOVR) spacecraft, we inferred BC and BrC volume fractions and particle mass concentrations based on spectral absorption provided by the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm with 1–2 hours temporal resolution and ~10 km spatial resolution over North America and Central Africa. Our analyses of regional smoke properties reveal distinct characteristics for aerosol optical depth (AOD) at 443 nm, spectral single scattering albedo (SSA), aerosol layer height (ALH), and BC and BrC amounts. Smoke cases in North America show extremely high AOD up to 6, with elevated ALH (6–7 km) and significant BrC components up to 250 mg/m² along the transport paths, whereas the smoke aerosols in Central Africa exhibited stronger light absorption (i.e., lower SSA) and lower AOD, resulting in higher BC mass concentrations and similar BrC mass concentrations than the cases in North America. Seasonal burning source locations in Central Africa following the seasonal shift of Inter Tropical Convergence Zone and diurnal variations in smoke amounts were also captured. Comparison of retrieved AOD₄₄₃, SSA₄₄₃, SSA₆₈₀, and ALH with collocated AERONET and CALIOP measurements shows agreement with rmse of 0.2, 0.03–0.04, 0.02–0.04, and 0.8–1.3 km, respectively. Analysis of spatiotemporally average reveals distinct geographical characteristics in smoke properties closely linked to burning types and meteorological conditions. Forest wildfires over western North America generated smoke with small BC volume fraction of 0.011 and high ALH with large variability (2.2 ± 1.2 km), whereas smoke from wildfires and agricultural burning over Mexico region shows more absorption and low ALH. Smoke from savanna fires over Central Africa has the most absorption with high BC volume fraction (0.015) and low ALH with small variation (1.8 ± 0.6 km) among the analyzed regions. Tropical forest smoke was less absorbing and had a high variance in ALH. We also quantify the estimation uncertainties related to the assumptions of BC and BrC refractive indices. The MAIAC EPIC smoke properties with BC and BrC volume and mass fractions and assessment of layer height provide observational constraints for radiative forcing modeling and air quality and health studies. | |
dc.description.sponsorship | The work of A. Lyapustin, M. Choi, S. Go, and Y. Wang was funded by the NASA DSCOVR program (21-DSCOVR-21-0004; manager Dr. R. Eckman) and in part by the NASA PACE program (19-PACESAT19-0039). J. S Reid was funded by the Office of Naval Research, Code 322. The work of H. Moosmüller was supported in part by the National Science Foundation under Grant No. OIA- 2148788 and by NASA under grant 80NSSC20M0205 (PACE SAT Project: PACE UV ROAD). We are grateful to the AERONET team for providing validation data and to the NASA Center for Climate Simulations providing resources for the EPIC data processing. | |
dc.description.uri | https://acp.copernicus.org/articles/24/10543/2024/ | |
dc.format.extent | 23 pages | |
dc.genre | journal articles | |
dc.identifier | doi:10.13016/m2w6jy-g9zz | |
dc.identifier.citation | Choi, Myungje, Alexei Lyapustin, Gregory L. Schuster, Sujung Go, Yujie Wang, Sergey Korkin, Ralph Kahn, et al. ‘Light-Absorbing Black Carbon and Brown Carbon Components of Smoke Aerosol from DSCOVR EPIC Measurements over North America and Central Africa’. Atmospheric Chemistry and Physics 24, no. 18 (23 September 2024): 10543–65. https://doi.org/10.5194/acp-24-10543-2024. | |
dc.identifier.uri | https://doi.org/10.5194/acp-24-10543-2024 | |
dc.identifier.uri | http://hdl.handle.net/11603/35243 | |
dc.language.iso | en_US | |
dc.publisher | EGU | |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC GESTAR II | |
dc.relation.ispartof | UMBC Faculty Collection | |
dc.relation.ispartof | UMBC Joint Center for Earth Systems Technology (JCET) | |
dc.rights | This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law. | |
dc.rights | Public Domain | |
dc.rights.uri | https://creativecommons.org/publicdomain/mark/1.0/ | |
dc.title | Light-absorbing black carbon and brown carbon components of smoke aerosol from DSCOVR EPIC measurements over North America and Central Africa | |
dc.type | Text | |
dcterms.creator | https://orcid.org/0000-0002-2488-2840 | |
dcterms.creator | https://orcid.org/0000-0002-0223-309X | |
dcterms.creator | https://orcid.org/0000-0002-5576-6711 | |
dcterms.creator | https://orcid.org/0000-0001-6514-5233 |
Files
Original bundle
1 - 1 of 1