CALET Observations during the First 5 Years on the ISS

Department

Program

Citation of Original Publication

Marrocchesi, P.S., Adriani, O., Akaike, Y. et al. CALET Observations during the First 5 Years on the ISS. Phys. Atom. Nuclei 84, 985–994 (2021). https://doi.org/10.1134/S1063778821130214

Rights

This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain Mark 1.0

Subjects

Abstract

The CALorimetric Electron Telescope CALET is collecting science data on the International Space Station since October 2015 with excellent and continuous performance. Energy is measured with a deep homogeneous calorimeter (1.2 nuclear interaction lengths, 27 radiation lengths) preceded by an imaging pre-shower (3 radiation lengths, 1mm granularity) providing tracking and 10−5 electron/proton discrimination. Two independent sub-systems identify the charge Z of the incident particle from proton to iron and above (Z<40). CALET measures the cosmic-ray electron + positron flux up to 20 TeV, gamma rays up to 10 TeV, and nuclei up to the PeV scale. In this paper, we report the on-orbit performance of the instrument and summarize the main results obtained during the first 5 years of operation, including the electron + positron energy spectrum and the individual spectra of protons, heavier nuclei and iron. Solar modulation and gamma-ray observations are also concisely reported, as well as transient phenomena and the search for gravitational wave counterparts.